

Town of East Gwillimbury 2024 Corporate Asset Management Plan

This Asset Management Plan was prepared by:

Empowering your organization through advanced asset management, budgeting & GIS solutions

Table of Contents

Exe	Executive Summary1				
1	About this Document				
2	Asset Management Overview 5				
3	Asset Portfolio				
4	Growth				
5	Levels of Service				
6	Financial Management 28				
7	Recommendations				
Арр	endix A: Levels of Service				
Арр	endix B: Facilities				
Арр	endix C: Land Improvements 54				
Арр	endix D: Vehicles 62				
Арр	endix E: Machinery and Equipment68				
Арр	Appendix F: Road Network				
Арр	endix G: Bridges and Culverts 86				
Арр	Appendix H: Stormwater Network				
Appendix I: Water Network					
Арр	endix J: Wastewater Network117				
Арр	endix K: Roadmap128				
Арр	Appendix L: Definitions of Key Terms130				

Acknowledgements

Steering Committee:

Mike Molinari, General Manager of Engineering and Public Works Meeta Gandhi, General Manager of Corporate Services Warren Marshall, Treasurer and General Manager of Finance Aaron Karmazyn, General Manager of Parks, Recreation and Culture Larry Brassard, Fire Chief Paul Neuman, Director of Engineering Scott MacNeil, Director of Modernization and Transformation

Asset Management Program Team:

Kirsten Dachs, Asset Management Project Manager Stephanie Roll, Asset Management Business Analyst Logan McVeity, GIS Analyst Chelsea Huber, Development Financial Analyst

Team Leads (Subject Matter Experts)

Frank Mazzotta, Manager of Parks Development & Operations Steve Cook, Acting Deputy Chief Jeff Meggitt, Director of Operations Kristy Baidy, Water and Wastewater Manager Kevin Arsenault, Capital Projects Manager

The consultant for the project was PSD Citywide Ltd. (Sarah Craig, Senior Asset Management Advisor). Many others participated in workshops and provided input into the development of this Asset Management Plan.

Executive Summary

The Institute of Asset Management (IAM) defines asset management as "the balancing of costs, opportunities and risks against the desired performance of assets to achieve an organization's objective". This involves the development and implementation of asset management strategies and long-term financial planning.

The overall replacement cost of the asset categories owned by East Gwillimbury totals \$2.24 billion. 93% of all assets analyzed have a fair or better condition rating. Condition data is frequently collected by staff and third-party consultants through field inspections or desktop assessments. Collection methodologies vary greatly for each asset segment. As such, staff must develop standards to convert annual deficiency reports and inspection data to condition ratings suitable for asset management reporting.

The development of a long-term, sustainable financial plan requires an analysis of whole lifecycle costs. Using a combination of proactive lifecycle strategies and replacement only strategies to determine the lowest cost option to maintain the current level of service.

To meet capital replacement and rehabilitation needs for existing infrastructure, prevent infrastructure backlogs, and achieve long-term sustainability, the Town's 10-year forecasted average annual capital requirement totals \$18.8 million. This is the cost to bring all assets to a state of good repair. Based on a historical analysis of sustainable capital funding sources, the Town is committing approximately \$8.2 million towards capital projects or reserves per year. This means that the town is currently funding 44% of the 10-year forecasted average annual capital requirements.

East Gwillimbury also looked at the planning forecast to the year 2051 aligned with master planning studies and growth reports. This longer-term forecast shows an annual average capital requirement of \$32.1 million. With approximately \$8.2 million directed toward capital projects and reserves annually, this longer-term forecast shows that the Town is funding 26% of the average annual capital requirements to 2051.

Addressing annual infrastructure funding shortfalls is a difficult and long-term endeavor for municipalities. Considering the Town's current funding position, it will require many years to reach full funding for current assets. Short phase-in periods to meet these funding targets may place too high a burden on taxpayers too quickly, whereas a phase-in period beyond 20 years may see a continued deterioration of infrastructure, leading to larger backlogs.

In addition to annual needs, there is also an infrastructure backlog of \$50.5 million, which is an industry term used to calculate the cost to replace assets that remain in

service beyond their estimated useful life. Note that some of the backlog represents prudence through strategic asset deferrals. Through careful preventative maintenance practices, many assets remain in fair or better condition beyond their useful life defined in the Tangible Capital Asset Policy. Targeted and consistent condition assessments are integral to refining long-term replacement and backlog estimates.

Risk frameworks and levels of service targets can then be used to prioritize projects and help select the right lifecycle intervention for the right asset at the right time including replacement or full reconstruction. The Town of East Gwillimbury has developed preliminary risk models which are integrated with its asset register. These models can produce risk matrices that classify assets based on their risk profiles.

Most municipalities in Ontario, and across Canada, continue to struggle with meeting infrastructure demands. This challenge was created over many decades and will take many years to overcome. To this end, several recommendations should be considered, including:

- Continuous and dedicated improvement to the municipality's inventory datasets, which form the foundation for all analysis, including financial projections and needs.
- Continuous refinements to the risk and lifecycle models as additional data becomes available. This will aid in prioritizing projects and creating more strategic long-term capital budgets.
- Development of key performance indicators for all infrastructure programs to establish benchmark data to calibrate levels of service targets for 2025 regulatory requirements.

East Gwillimbury has taken important steps in building its asset management program, including developing a more complete and accurate asset register—a substantial initiative. Continuous improvement to this inventory will be essential in maintaining momentum, supporting long-term financial planning, and delivering affordable service levels to the community.

1 About this Document

The Town of East Gwillimbury Asset Management Plan (AMP) was developed by PSD Citywide Ltd. in accordance with Ontario Regulation 588/17 ("O. Reg 588/17"). It contains a comprehensive analysis of the Town's infrastructure portfolio. This is a living document that should be updated regularly as additional asset and financial data becomes available.

1.1 Ontario Regulation 588/17

As part of the *Infrastructure for Jobs and Prosperity Act, 2015*, the Ontario government introduced Regulation 588/17 - Asset Management Planning for Municipal Infrastructure. Along with creating better performing organizations, more livable and sustainable communities, the regulation is a key, mandated driver of asset management planning and reporting. It places substantial emphasis on current and proposed levels of service and the lifecycle costs incurred in delivering them.

 Table 1 Ontario Regulation 588/17 Requirements and Reporting Deadlines

Requirement	2019	2022	2024	2025
1. Strategic Asset Management Policy	~		✓	
2. Asset Management Plans		\checkmark	✓	•
State of infrastructure for core assets		\checkmark		
State of infrastructure for all assets			✓	•
Current levels of service for core assets		\checkmark		
Current levels of service for all assets			✓	
Proposed levels of service for all assets				•
Lifecycle costs associated with current levels of service		~	~	
Lifecycle costs associated with proposed levels of service				•
Growth impacts		\checkmark	✓	•
Financial strategy				•

1.2 Limitations and Constraints

The asset management program development required substantial effort by staff, it was developed based on best-available data, and is subject to the following broad limitations, constraints, and assumptions:

- The analysis is highly sensitive to several critical data fields, including an asset's estimated useful life, replacement cost, quantity, and in-service date. Inaccuracies or imprecisions in any of these fields can have substantial and cascading impacts on all reporting and analytics.
- User-defined and unit cost estimates, based typically on staff judgment, recent projects, or established through completion of technical studies, offer the most precise approximations of current replacement costs. When this isn't possible, historical costs incurred at the time of asset acquisition or construction can be inflated to the present day. This approach, while sometimes necessary, can produce highly inaccurate estimates.
- In the absence of condition assessment data that meets the assessment methodology, age was used to estimate asset condition ratings. This approach can result in an over- or understatement of asset needs. This is most prevalent on assets with a long service life and minimal degradation, such as watermains, not including appurtenances (hydrants, valves, etc.) which are inspected annually, at a minimum. As a result, financial requirements generated through this approach can differ from those produced by staff.
- The risk models are designed to support objective project prioritization and selection. However, in addition to the inherent limitations that all models face, they also require availability of detailed asset data to ensure asset risk ratings are valid, and assets are properly stratified within the risk matrix. Missing attribute data can misclassify assets.

These limitations have a direct impact on most of the analysis presented, including condition summaries, age profiles, long-term replacement and rehabilitation forecasts, and shorter term, 10-year forecasts that are generated from Citywide, the Town's primary asset management system.

These challenges are quite common among municipalities and require long-term commitment and sustained effort by staff. As the Town's asset management program evolves and advances, the quality of future AMPs and other core documents that support asset management will continue to increase.

1.3 Scope

The scope of this document is to identify the current practices and strategies that are in place to manage public infrastructure and to make recommendations where they can be further refined. Through the implementation of sound asset management strategies, the Town can ensure that public infrastructure is managed to support the sustainable delivery of municipal services.

Road NetworkTax LevyBridges & CulvertsFacilities	Asset Category	Source of Funding
	Road Network	Tax Levy
Facilities	Bridges & Culverts	
	Facilities	
Land Improvements	Land Improvements	
Machinery & Equipment	Machinery & Equipment	
Vehicles	Vehicles	
Stormwater Network	Stormwater Network	
Water Network User Rates	Water Network	User Rates
Wastewater Network	Wastewater Network	

2 Asset Management Overview

Municipalities are responsible for managing and maintaining a broad portfolio of infrastructure assets to deliver services to the community. The goal of asset management is to minimize the lifecycle costs of delivering infrastructure services, manage the associated risks, while maximizing the value and levels of service the community receives from the asset portfolio.

Lifecycle costs can span decades, requiring planning and foresight to ensure financial responsibility is spread equitably across generations. An AMP is critical to this planning, and an essential element of the broader asset management program. The industry-standard approach and sequence to developing a practical asset management program begins with a Corporate Strategic Plan, followed by a Strategic Asset Management Policy and an Asset Management Roadmap, concluding with an AMP.

This industry standard, defined by the Institute of Asset Management (IAM), emphasizes the alignment between the corporate strategic plan and various asset management documents. The strategic plan has a direct, and cascading impact on asset management planning and reporting.

2.1 Foundational Documents

2.1.1 Corporate Strategic Plan

The strategic plan has a direct, and cascading impact on asset management planning and reporting, making it a foundational element. At the beginning of each term, Council holds strategic planning exercises and discussions to identify major initiatives and administrative improvements it wishes to achieve during its tenure. Staff then identify the scope, resources, timing & other logistical matters associated with proposed initiatives. The Strategic Plan 2022-2026 was used in preparation of this AMP.

2.1.2 Strategic Asset Management Policy

A Strategic Asset Management Policy represents a statement of the principles guiding a municipality's approach to asset management activities. It aligns with the organization strategy set by Council and provides clear direction to municipal staff on their roles and responsibilities related to the asset management program.

The Town of East Gwillimbury adopted Policy No. 20-300-CP-001 "Strategic Asset Management Policy" on August 13, 2019, in accordance with Ontario Regulation 588/17. An updated Strategic Asset Management Policy is being presented to Council in 2024. The policy defines a corporate-wide asset management program that will promote "the adoption of industry best practices, continuous improvement protocols and lifecycle and risk management of all municipal infrastructure assets, with the goal of achieving the lowest total cost of ownership while meeting desired levels of service."

The policy also stipulates the need to develop an Asset Management Plan in accordance with Ontario Regulation 588/17 requirements. The Town must demonstrate an organization-wide commitment to good stewardship of municipal assets and to improve accountability and transparency to the community through the adoption of asset management practices.

The Town of East Gwillimbury additionally adopted Procedure No. 20-300-OP-002 "Strategic Asset Management Procedures" on August 13, 2019. This procedure defines the wide range of duties, responsibilities, and actions required to support the Town's asset management program.

2.1.3 Asset Management Roadmap

An Asset Management Roadmap outlines the translation of organizational objectives into asset management objectives and provides a strategic overview of the activities required to meet these objectives. It provides greater detail than the policy on how East Gwillimbury plans to achieve its asset management objectives through planned activities and decision-making criteria. See Appendix K: Roadmap for the activities identified in the roadmap.

2.1.4 Asset Management Plan

The Asset Management Plan is often identified as a key output within the strategy. The AMP has a sharp focus on the current state of the Town's asset portfolio, and its approach to managing and funding individual service areas or asset groups. It is tactical in nature and provides a snapshot in time.

2.2 Key Technical Concepts

Effective asset management integrates several key components, including data management, lifecycle management, risk management, and levels of service. These concepts are applied throughout this AMP and are described below in greater detail.

2.2.1 Asset Hierarchy and Data Classification

Asset hierarchy illustrates the relationship between individual assets and their components, and a wider, more expansive network and system. How assets are grouped in a hierarchy structure can impact how data is filtered and interpreted. Assets were structured to support meaningful, efficient reporting and analysis. Key category details are summarized at the asset segment level. The data hierarchy structure was updated for the 2024 AMP.

2.2.2 Replacement Costs

There are a range of methods to determine the replacement cost of an asset, and some are more accurate and reliable than others. The two methodologies are:

- **User-Defined Cost and Cost/Unit**: Based on costs provided by municipal staff which could include average costs from recent contracts; data from engineering reports and assessments; staff estimates based on knowledge and experience
- **Cost Inflation/CPI Tables**: Historical cost (original purchase price) of the asset is inflated based on Consumer Price Index or Non-Residential Building Construction Price Index

User-defined costs based on reliable sources are a reasonably accurate and reliable way to determine asset replacement costs. Cost inflation is typically used in the absence of reliable replacement cost data. It is a reliable method for recently purchased and/or constructed assets where the total cost is reflective of the actual costs that the Town incurred. As assets age, and new products and technologies become available, cost inflation becomes a less reliable method.

2.2.3 Estimated Useful Life and Service Life Remaining

The estimated useful life (EUL) of an asset is the period over which the Town expects the asset to be available for use and remain in service before requiring replacement or disposal. The EUL for each asset was assigned according to the knowledge and expertise of municipal staff and supplemented by existing industry standards when necessary.

By using an asset's in-service date and its EUL, the Town can determine the service life remaining (SLR) for each asset. Using condition data and the asset's SLR, the Town can more accurately forecast when assets will require replacement.

2.2.4 Asset Condition

An incomplete or limited understanding of asset condition can mislead long-term planning and decision-making. Accurate and reliable condition data helps to prevent premature and costly rehabilitation or replacement and ensures that lifecycle activities occur at the right time to maximize asset value and useful life.

A condition assessment rating system provides a standardized descriptive framework that allows comparative benchmarking across the municipality's asset portfolio. The analysis is based on assessed condition data (only as available). In the absence of assessed condition data, asset age is used to determine asset condition

2.2.5 Lifecycle Management Strategies

The condition or performance of most assets will deteriorate over time. This process is affected by a range of factors including an asset's characteristics, location, utilization, maintenance history and environment. Asset deterioration has a negative effect on the ability of an asset to fulfill its intended function, and may be characterized by increased cost, risk and even service disruption.

To ensure that municipal assets are performing as expected and meeting the needs of customers, it is important to establish a lifecycle management strategy to proactively manage asset deterioration.

There are several field intervention activities that are available to extend the life of an asset. These activities can be generally placed into one of three categories: maintenance, rehabilitation, and replacement. The following table provides a description of each type of activity and the general difference in cost.

Depending on initial lifecycle management strategies, asset performance can be sustained through a combination of maintenance and rehabilitation, but at some point, replacement is required. Understanding the effect these activities will have on the lifecycle of an asset, and their cost, will enable staff to make better recommendations.

Figure 1 provides a description of each type of activity, the general difference in cost, and typical risks associated with each.

The Town's approach to lifecycle management is described within each asset category. Developing and implementing a proactive lifecycle strategy will help staff to determine which activities to perform on an asset and when they should be performed to maximize useful life at the lowest total cost of ownership.

Figure 1 Lifecyle Management Typical Interventions

Maintenance

- •General level of cost is \$
- •All actions necessary for retaining an asset as near as practicable to its original condition, but excluding rehabilitation or renewal. Maintenance does not increase the service potential of the asset or keep it in its original condition;
- •It slows down deterioration and delays when rehabilitation or replacement is necessary.

Rehabilitation / Renewal

- •General level of cost is **\$\$\$**
- •Works to rebuild or replace parts or components of an asset, to restore it to a required functional condition and extend its life, which may incorporate some modification.
- •Generally involves repairing the asset to deliver its original level of service (i.e. milling and paving of roads) without resorting to significant upgrading or replacement, using available techniques and standards.

Replacement

- •General level of cost is **\$\$\$\$**
- •The complete replacement of an asset that has reached the end of its life, so as to provide a similar, or agreed alternative, level of service.
- •Existing asset disposal is generally included

2.2.6 Risk Management

Municipalities generally take a 'worst-first' approach to infrastructure spending. Rather than prioritizing assets based on their importance to service delivery, assets in the worst condition are fixed first, regardless of their criticality. However, not all assets are created equal. Some are more important than others, and their failure or disrepair poses more risk to the community than that of others.

By identifying the various impacts of asset failure and the likelihood that it will fail, risk management strategies can identify critical assets and determine where maintenance efforts and spending should be focused. This AMP includes a high-level evaluation of asset risk and criticality through quantitative and qualitative methodologies.

Quantitative Approach to Risk

Asset risk is defined using the following formula:

Risk = *Probability of Failure (POF)* × *Consequence of Failure (COF)*

The probability of failure relates to the likelihood that an asset will fail at a given time. The probability of failure focuses on two highly imperative impacts for risk assessment – structural and functional impacts. Structural impacts are related to the structural aspects of an asset such as load carrying capacity, condition, or breaks; whereas the functional impacts can include parameters, slope, traffic count, and other impacts that can affect the performance of an asset.

The consequence of failure describes the overall effect that an asset's failure will have on an organization's asset management goals. The consequences of failure can range from non-eventful to impactful. The consequence of failure parameters aims to align with the Triple Bottom Line approach – economic, social, environmental – to risk management as well as other fields including operational, health and safety, and strategic.

Each asset has been assigned a probability of failure score and consequence of failure score based on available asset data. These risk scores can be used to prioritize maintenance, rehabilitation, and replacement strategies for critical assets.

Qualitative Approach to Risk

The qualitative risk assessment involves the documentation of risks to the delivery of services that a municipality faces given the current state of the infrastructure and asset management strategies. These risks can be understood as corporate level risks.

2.2.7 Levels of Service

A level of service (LOS) is a measure of what the Town is providing to the community and the nature and quality of that service. Within each asset category in this AMP, technical metrics and qualitative descriptions that measure both technical and community levels of service have been established and measured as data is available.

These metrics include the technical and community level of service metrics that are required as part of Ontario Regulation 588/17 as well as additional performance measures that the Town has selected in accordance with best practices defined by the International Infrastructure Management Manual (IIMM).

Current and Proposed Levels of Service

The Town of East Gwillimbury is focused on measuring the current level of service provided to the community. Once current levels of service have been measured, the Town plans to establish proposed levels of service over a 10-year period, in accordance with Ontario Regulation 588/17.

Proposed levels of service should be realistic and achievable within the timeframe outlined by the Town. They should also be determined with consideration of a variety of community expectations, fiscal capacity, regulatory requirements, corporate goals, and long-term sustainability. Once proposed levels of service have been established, and prior to July 2025, the Town must identify a lifecycle management and financial strategy within which these targets can be achieved.

2.2.8 Climate Change

Climate change can cause severe impacts on human and natural systems around the world. The effects of climate change include increasing temperatures, higher levels of precipitation, droughts, and extreme weather events. In 2019, Canada's Changing Climate Report (CCCR 2019) was released by Environment and Climate Change Canada (ECCC).

The report revealed that between 1948 and 2016, the average temperature increase across Canada was 1.7°C. The temperature increase in Canada has doubled that of the global average. If emissions are not significantly reduced, the temperature could increase by 6.3°C in Canada by the year 2100 compared to 2005 levels. Observed precipitation changes in Canada include an increase of approximately 20% between 1948 and 2012. By the late 21st century, the projected increase could reach an additional 24%. During the summer months, some regions in Southern Canada are expected to experience periods of drought at a higher rate. Extreme weather events and climate conditions are more common across Canada. Recorded events include droughts, flooding, cold extremes, warm extremes, wildfires, and record minimum arctic sea ice extent.

The changing climate poses a significant risk to the Canadian economy, society, environment, and infrastructure. The impacts on infrastructure are often a result of climate-related extremes such as droughts, floods, higher frequency of freeze-thaw cycles, extended periods of high temperatures, high winds, and wildfires. Physical infrastructure is vulnerable to damage and increased wear when exposed to these extreme events and climate variabilities. Canadian municipalities are faced with the responsibility to protect their local economy, citizens, environment, and physical assets.

2.2.9 Reinvestment Rate

As assets age and deteriorate, they require additional investment to maintain a state of good repair. The reinvestment of capital funds, through asset renewal or replacement, is necessary to sustain an adequate level of service. The reinvestment rate is a measurement of available or required funding relative to the total replacement cost. By comparing the actual vs. target reinvestment rate the Town can determine the extent of any existing funding gap.

3 Asset Portfolio

3.1 Community Profile

The Town of East Gwillimbury is in the Regional Municipality of York and is part of the Greater Toronto Area. East Gwillimbury is within the Lake Simcoe watershed with the East Holland River running directly through Town. The region has a diverse and vibrant environment making it a center for tourism and recreation and a beautiful place to live.

The region was initially established in the 1800s as part of the greater Toronto settling area. The Township and villages that made up the region experienced moderate growth as a center for transportation (particularly river transportation) and agriculture; however, the area became a notable community independent of the major City nearby. The bulk of the early settlement in East Gwillimbury was concentrated in the communities of: Sharon, Mt. Albert and Queensville.

By 1850, East Gwillimbury's population had grown to the extent that it was incorporated as a town. East Gwillimbury is named in honour of Elizabeth Simcoe, who was the wife of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada. Elizabeth Simcoe's maiden name was Gwillim. Today, it remains a blend of urban and rural life with strong ties to the City of Toronto.

Census Characteristic	Town of East Gwillimbury	Ontario
Population 2021	34,637	14,223,942
Population Change 2016-2021	44.4%	5.8
Total Private Dwellings	11,869	5,929,250
Population Density	141.4/km ²	15.9/km ²
Land Area	244.91 km ²	892,411.76 km ²

Like many municipalities in the greater Toronto area, the Town of East Gwillimbury is currently experiencing significant growth. Historically, the Town had experienced population growth slightly above the national average, however, from 2016 to 2021, the population increased at approximately 8.5 times the national average. According to the 2021 Census, East Gwillimbury is the fastest growing municipality in Canada.

3.1.1 Climate Profile

The Town of East Gwillimbury is part of the Greater Toronto Area in Southern Ontario within the Lake Simcoe watershed along the East Holland River. The Town is expected to experience notable effects of climate change which include higher average annual temperatures, an increase in total annual precipitation, and an increase in the frequency and severity of extreme events. According to Climatedata.ca – a collaboration supported by Environment and Climate Change Canada (ECCC) – the Town of East Gwillimbury may experience the following trends:

Higher Average Annual Temperature:

- Between the years 1981 and 2010 the annual average temperature was 6.5°C
- Under a high emissions scenario, the annual average temperatures are projected to reach 9°C by the year 2050 and over 12°C by the end of the century.

Increase in Total Annual Precipitation:

• Under a high emissions scenario, East Gwillimbury is projected to experience a 7% increase in precipitation by the year 2050 and a 14% increase by the end of the century.

Increase in Frequency of Extreme Weather Events:

- It is expected that the frequency and severity of extreme weather events will change.
- In some areas, extreme weather events will occur with greater frequency and severity than others, especially those impacted by Great Lake winds.

3.1.2 Integrating Climate Change

To achieve the sustainable delivery of services, climate change considerations should be incorporated into asset management practices. The integration of asset management and climate change adaptation observes industry best practices and enables the development of a holistic approach.

East Gwillimbury's Environmental Strategy is a robust set of actions that support the municipality's commitment to protect and restore the natural environment as the municipality grows. The Environmental Strategy has developed thematic areas of focus that help to consistently illustrate the Town's approach to advancing their environmental stewardship. The five thematic areas are land, water, air, biodiversity and empowerment.

These areas were used to develop a road map outlining the Town's successes and future steps forward. By focusing further on four categories: Policy, Legislation, Operations and Events and Education, the action plan provides a comprehensive view of the environmental initiatives in East Gwillimbury.

Asset management practices aim to deliver sustainable service delivery - the delivery of services to residents today without compromising the services and wellbeing of future residents. Climate change threatens sustainable service delivery by reducing the useful life of an asset and increasing the risk of asset failure. Desired levels of service can be more difficult to achieve because of climate change impacts such as flooding, high heat, drought, and more frequent and intense storms. The Town has defined five vulnerability events and assessed the impact each would have on all municipal infrastructure. The events are as follows:

Extreme Rainfall

This is defined as heavy rainfall of greater than 100mm in 24 hours. High-intensity storm events are expected to occur more frequently.

Extreme Snowstorms

A blizzard with wind speeds at or above 56km/h causing blowing snow conditions where visibility is reduced, and snowdrifts accumulate.

Extreme Freeze/Thaw

This is defined as an increased number of freeze thaw cycles annually. More extreme swing between temperature highs and lows over the winter season

Extreme Winds

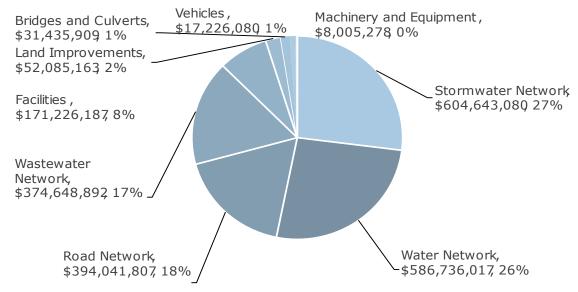
Maximum hourly wind speeds are increased annually. An increase in the number of days with wind gusts exceeding 100km/hour is expected.

Extreme Heat

It is expected that there will be an increased number and length of heat waves (3 or more days above 30°C). An increased maximum daily and hourly temperature is expected.

The impact was then used to calculate the probability of asset failure on each asset. See section Risk Management for more details.

3.2 State of the Infrastructure


Asset Category	Replacement Cost	Asset Condition	Financial Capacity	
Road Network	\$394,041,807	Good (71%)	Annual Requirement:	\$4,652,626
			Funding Available:	\$2,704,365
			Annual Deficit:	\$1,948,261
Bridges and	\$31,435,909	Good (70%)	Annual Requirement:	\$893,078
Culverts			Funding Available:	\$235,162
			Annual Deficit:	\$657,916
Stormwater	\$604,643,080	Very Good	Annual Requirement:	\$8,551,719
Network		(84%)	Funding Available:	\$0
			Annual Deficit:	\$8,551,719
Facilities	\$171,226,187	Good (68%)	Annual Requirement:	\$3,899,278
			Funding Available:	\$1,805,738
			Annual Deficit:	\$2,093,540
Land	\$52,085,163 its	Very Good	Annual Requirement:	\$1,630,861
Improvements		(86%)	Funding Available:	\$0
			Annual Deficit:	\$1,630,861
Vehicles	\$17,226,080	-	Annual Requirement:	\$1,701,902
			Funding Available:	\$1,050,036
			Annual Deficit:	\$651,866
Machinery and	l \$8,005,278	Fair (58%)	Annual Requirement:	\$937,030
Equipment			Funding Available:	\$279,498
			Annual Deficit:	\$657,532
Water	er \$586,736,017	Very Good	Annual Requirement:	\$5,544,995
Network		(87%)	Funding Available:	\$953,305
			Annual Deficit:	\$4,591,690
Wastewater	\$376,161,773	Very Good	Annual Requirement:	\$4,292,145
Network		(88%)	Funding Available:	\$1,204,162
			Annual Deficit:	\$3,087,983
Overall	\$2,241,561,295	Very Good	Annual Requirement:	\$32,103,633
		(81%)	Funding Available:	\$8,232,266
			Annual Deficit:	\$23,871,367

The table above shows a lack of funding for the Stormwater network and Land Improvements asset categories. The Stormwater Management Master Plan will inform the available stormwater funding for future AMPs. Beginning with the 2024 budget, \$295,000 is being set aside for Land Improvements through the Parks Structure Reserve.

3.3 Inventory and Valuation

The total asset portfolio owned by East Gwillimbury has a replacement cost of \$2.24 billion based on available inventory data. This total was determined based on a combination of user-defined costs and historical cost inflation. This estimate reflects replacement of historical assets with similar, not necessarily identical, assets available for procurement today.

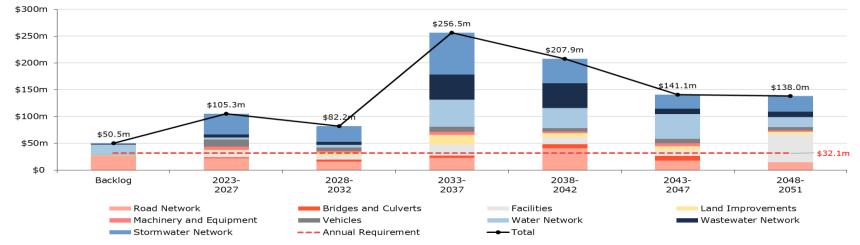
3.4 Asset Condition

The table below outlines the condition rating system used in this AMP to determine asset condition. This 5-tier rating system is aligned with the Canadian Core Public Infrastructure Survey which is used to develop the Canadian Infrastructure Report Card. Using a standardized system for all assets provides comparability across asset categories and with other municipalities that use the same standard.

Condition	Description	Criteria
Very Good	Fit for the future	Well maintained, good condition, new or recently rehabilitated
Good	Adequate for now	Acceptable, generally approaching mid-stage of expected service life
Fair	Requires attention	Signs of deterioration, some elements exhibit significant deficiencies
Poor	Increasing potential of affecting service	Approaching end of service life, condition below standard, large portion of system exhibits significant deterioration
Very Poor	Unfit for sustained service	Near or beyond expected service life, widespread signs of advanced deterioration, some assets may be unusable

Table 2: Condition Definitions

When assessed condition data is not available, service life remaining is used to approximate asset condition.


The analysis in this AMP is based on assessed condition data that was translated to a condition rating within the asset inventory. The Town continues to develop assessment programs and procedures to develop inspection methodologies that align with AMP requirements. The conformance to AMP condition methodology is based on acceptable asset condition data inspections.

3.5 Lifecycle Management

Aging assets require maintenance, rehabilitation, and replacement. Figure 3 below illustrates the forecasted infrastructure replacement requirements for all asset categories analyzed to 2051. On average, \$32.1 million is required each year to remain current with capital replacement needs for the Town's asset portfolio (red dotted line).

Although actual spending may fluctuate substantially from year to year, this figure is a useful benchmark for annual capital expenditure targets (or allocations to reserves) to ensure projects are not deferred and replacement needs are met as they arise. This figure relies on age and available condition data, it looks at the replacement needs to the year 2051, it does not include the full lifecycle of the asset inventory. Based on the current replacement cost of the portfolio, estimated at \$2.24 billion, representing an annual target reinvestment rate of 1.43%.

The chart also illustrates a backlog of \$50.5 million, comprising assets that remain in service beyond their estimated useful life. These assets have been assessed by staff to not require immediate replacements or major renewals. Targeted and consistent condition assessments are integral to the asset management program.

Figure 3: Forecasted Capital Requirements to the Year 2051

Risk frameworks, proactive lifecycle strategies, and levels of service targets can be used to prioritize projects, continuously refine estimates for both backlog and ongoing capital needs and help select the right treatment for each asset. The 10-year forecast for all assets can be seen in the figure below, it looks at the replacement needs for the next 10 years and estimates the average annual requirement is \$18.8 million to meet the needs for the next 10 years.

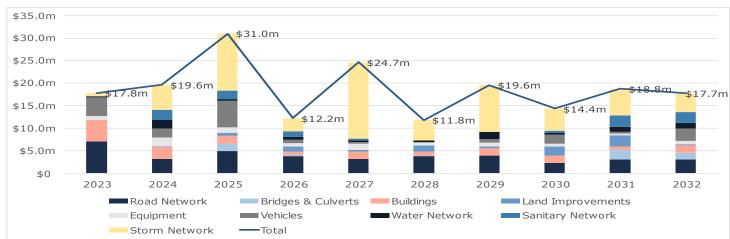


Figure 4: 10-Year Forecasted Capital Requirements

3.6 Risk Management

A risk assessment framework, when applied to asset management, should provide an asset risk rating to assist with the management of assets. This requires the development of quantitative and qualitative models that can leverage asset data and information.

A good risk model will analyse existing data then provide information and processes needed to help prioritize and allocate the available money and resources to the right asset at the right time. Municipalities generally take a 'worst-first' approach to infrastructure spending. Rather than prioritizing assets based on their importance to service delivery, assets in the worst condition are fixed first, regardless of their criticality. However, not all assets are created equal. Some are more important than others, and their failure or disrepair poses more risk to the community. For example, a road with a high volume of traffic that provides access to critical services poses a higher risk than a low volume rural road. These high-value assets should receive funding before others.

By identifying the various impacts of asset failure and the likelihood that it will fail, risk management strategies can identify critical assets, and determine where maintenance efforts, and spending, should be focused.

3.6.1 Qualitative Risk

The qualitative risk assessment involves the documentation of risks to the delivery of services that the municipality faces given the current state of the infrastructure and asset management strategies. These risks can be understood as corporate level risks. Municipal staff provided information related to the following potential risks:

	Risk Type	Description
	Asset Data Confidence	The asset data available to support asset management planning is not all in one master location where there would be confidence of the most up to date data is available.
	Lifecycle Management Strategies	Lifecycle management strategies are not proactive but are under development.
$\bigcirc \mathbb{P}$	Organizational Cognizance/Capacity	Training is needed for staff to have the knowledge and capacity to engage in informed asset management practices.
(\mathcal{R})	Infrastructure Design/Installation	There are concerns with the past design and/or materials used for some types of infrastructure
	Aging Infrastructure	Significant portions of the infrastructure are reaching the end of their useful lives.

Table 3: Qualitative Risks in East Gwillimbury

Risk Type	Description
Climate Change & Extreme Weather Events	Climate and extreme weather events have an impact on infrastructure service life as well as functionality
Growth	Community growth is expected to continue as the fasted growing community in Ontario
\$ Infrastructure Re- investment	Current levels of investment in infrastructure need to be look at to ensure they are meeting lifecycle requirements and maintaining a good state of repair

The qualitative risks identified can guide information and data gathering in the future.

3.6.2 Quantitative Risk

A high-level evaluation of asset risk and criticality was performed. Each asset has been assigned a probability of failure score and consequence of failure score based on available asset data. These risk scores can be used to prioritize maintenance, rehabilitation, and replacement strategies for critical assets.

Risk is a product of two variables: the probability that an asset will fail, and the resulting consequences of that failure event. It can be a qualitative measurement, (low, medium, high) or quantitative measurement (1-5), that can be used to rank assets and projects, identify appropriate lifecycle strategies, optimize short- and long-term budgets, minimize service disruptions, and maintain public health and safety.

Probability of Failure

Several factors can help decision-makers estimate the probability or likelihood of an asset's failure, including its condition, age, previous performance history, and exposure to extreme weather events.

East Gwillimbury has defined the probability of asset failure through 2 parameters: Condition and Climate Vulnerability. See section Asset Condition for details as well as the appendix for each asset category for condition scales and definitions. Climate vulnerability was assessed by defining 5 events and their impact on the municipal infrastructure.

The scale used to rate the impact of the climate vulnerabilities is as follows:

- 1. No noticeable impact.
- 2. Minor impacts on service life and/or capacity.
- 3. Significant deterioration or reduction in capacity.
- 4. Exceeds service capacity or loss of functionality.
- 5. Loss of assets.

The probability of asset failure was then modelled utilizing 80% asset condition and 20% climate impact. This weighting was determined to incorporate the impact of a severe climate event by increasing the impacted assets' probability of failure, without overriding the condition value.

Consequence of Failure

Estimating criticality also requires identifying the types of consequences that the organization and community may face from an asset's failure, and the magnitude of those consequences. Consequences of asset failure will vary across the infrastructure portfolio; the failure of some assets may result primarily in high direct financial cost but may pose limited risk to the community. Other assets may have a relatively minor financial value, but any downtime may pose significant health and safety hazards to residents. See the Appendix for more details on each asset category including the definitions and the developed consequences of failure.

Overall Risk Summary

The risk matrix provides a visual representation of the relationship between the probability of failure and the consequence of failure for the assets within East Gwillimbury's infrastructure inventory based on available data.

Figure 5: Risk Summary

4 Growth

The demand for infrastructure and services will change over time based on a combination of internal and external factors. Understanding the key drivers of growth and demand will allow the Town to effectively plan for new infrastructure, and the upgrade or disposal of existing infrastructure. Increases or decreases in demand can affect assets needs and the appropriate level of service to meet the needs of the community.

4.1 Official Plan

The Official Plan establishes the vision for long-term growth and development within the Town. The Plan provides policy guidance on land uses for parks, employment, housing, and other uses and informs the long-term objectives for core infrastructure and public services such as transportation, water, and wastewater.

The Town of East Gwillimbury adopted an updated Official Plan in 2022. The vision of the plan is to develop a sustainable community and ensure that growth does not place an undue financial burden on the residents of the Town. The Official Plan is

developed in accordance with the Provincial Policy Statement (2005), the Provincial Growth Plan "Places to Grow", the Lake Simcoe Protection Plan, Green Energy & Economy Act and Greenbelt Plan.

The Plan is also structured to conform to the Region of York Official Plan, the Region's comprehensive infrastructure master plans and Planning for Regional Growth. York Region approved a new Official Plan in 2022. Population and employment growth projections for the Town of East Gwillimbury were defined and utilized in the most recent version of the Town's Official Plan. York Region's population is projected to increase from 1.2 million residents to over 2 million residents by 2051. The Official Plan provides a regional analysis of this growth along with policy objectives to support efficient growth and a diversified economy for all municipalities within its borders.

4.2 Infrastructure Master Plans

The Town of East Gwillimbury has developed several key master plans that serve as guiding documents for municipal services with the expected growth. The master plans are deemed to be an integral component of the Town's Official Plan. East Gwillimbury has a Water and Wastewater Master Plan (2009) updated in 2024, Transportation Master Plan (2010) updated in 2024, and Stormwater Management Master Plan (2009) that is scheduled to be updated in 2026. These plans will be regularly reviewed and updated.

The Water and Wastewater Master Plan was developed with significant residential and employment growth in mind. The target residential and employment population projections utilized in this study are 140,730 and 63,068 respectively. The Plan states that with expected growth, the previous water supply proposals will not be sufficient; the proposed water storage capacity must meet the Ministry of Environment, Conservation and Parks (MECP)'s requirements for peak equalization, fire and emergency uses. The Plan also states that the Region's wastewater collection and treatment system will require expansion to accommodate growth in East Gwillimbury.

The updated Transportation Master Plan identifies the long-term transportation goals as well as specific solutions requiring further study. Some of the study subjects are already defined, such as public and stakeholder engagement, multimodal networks, managing peak travel demand, and community-oriented traffic control.

The Stormwater Management Master Plan (SWMMP) is intended to prepare a practical framework that balances infrastructure and development requirements with economic, social, and environmental constraints. The Plan provides input to improve the management of stormwater for both existing and planned development. The Plan includes an assessment which found that a general increase in peak flow will occur due to the proposed development. A post-to-pre approach

(post-development infiltration must be equal to the pre-development infiltration) will be required and in some cases an over-control approach may be needed. The Town is preparing an updated Storm Water Management Master Plan (SWMMP) that will investigate and recommend opportunities in new and existing areas to prevent flooding, reduce phosphorus loading on Lake Simcoe, mitigate erosion, maintain/improve water quality, and explore opportunities for sustainable stormwater funding sources.

The Master Plans for core infrastructure indicate that the Town must integrate notable considerations for population and employment growth in new developments. Further studies may be required to update the plans and strategies to improve growth management.

4.3 Growth Trends and Demand Drivers

Historically, the Town has experienced population growth above the national average. According to the 2021 Census, East Gwillimbury is the fastest growing municipality in Canada with over 44% population growth between 2016 and 2021. Population and employment in the Town are expected to continue to increase at significant rates.

This AMP relies on growth projections that were identified as part of East Gwillimbury's 2022 Official Plan review. The following table summarizes population and employment projections.

Туре	Location	Current	2031	2041	2051
Population	Central Growth Area	24,500	45,300	68,000	113,600
	Mount Albert	6,000	8,000	8,000	8,000
	Rural Area	6,000	6,000	6,000	6,000
	TOTAL	36,500	59,300	82,000	127,600
Employment	Central Growth Area	8,300	14,300	23,500	40,800
	Mount Albert	1,000	1,500	2,000	2,000
	Rural Area	1,000	1,000	1,000	1,000
	TOTAL	10,300	16,800	26,500	43,800

The Town of East Gwillimbury is projected to experience significant growth; population growth of 62% between 2021 and 2031 and 250% growth between

2021 and 2051. Employment is projected to follow a similar growth trend as population with 63% growth between 2021 and 2031 and 325% growth between 2021 and 2051.

As stated in the Official Plan, the Town will continue to support a wide range of employment opportunities and a diverse economy within its borders. East Gwillimbury is committed to diversifying commercial land use while also supporting the existing rural/agricultural economy.

4.4 Impact of Growth

Planning for forecasted population growth may require the expansion of existing infrastructure and services. As growth-related assets are constructed or acquired, they should be integrated into the Town's asset management plan. While the addition of residential units will add to the existing assessment base and offset some of the costs associated with growth, the Town will need to review the lifecycle costs of growth-related infrastructure. These costs should be considered in long-term funding strategies designed to maintain the current level of service.

By July 1, 2025, the Town's AMP must include a discussion of how the assumptions regarding future changes in population and economic activity informed the preparation of the lifecycle management and financial strategy. In this asset management plan, high-level analysis has been conducted to determine infrastructure and service needs that will result from projected growth. This analysis includes consideration of new acquisitions and the related capital and operations and maintenance costs as well as potential staffing demands.

Of specific note, availability of wastewater allocation to service new development demand is limited. York Region's Upper York Sewage Solution, proposed for 2031, is the preferred solution to expand treatment capability for East Gwillimbury. Growth projections outlined in this plan are subject to the timing of this solution coming on-line and could change based on the solution determined.

4.4.1 Infrastructure Acquisition

Population and employment growth in East Gwillimbury is projected to necessitate significant development and asset acquisition. Municipal staff used population growth projections and the existing inventory to predict the amount of linear assets that may be required to support growth. See the appendix for more details in each asset category growth management section.

4.4.2 Impacts on Operating

Each department is expected to require additional staffing to support growth and new development in the Town. Some divisions already have limited staffing to manage existing assets. Newly acquired assets will require more staff resources to undertake the planning, lifecycle management, and administration needed to maintain the desired level of service.

5 Levels of Service

A level of service (LOS) is a measure of what the Town is providing to the community and the nature and quality of that service. Within each asset category in this AMP, technical metrics and qualitative descriptions that measure both technical and community levels of service have been established and measured as data is available. These measures include a combination of those that have been outlined in O. Reg. 588/17 in addition to performance measures identified by the Town as worth measuring and evaluating. The Town measures the level of service provided at two levels: Community Levels of Service, and Technical Levels of Service.

5.1 Strategic Plan

East Gwillimbury's strategic focus is on sustainability. Sustainability is defined by supporting the ability of current and future generations to thrive, while ensuring a balance between economic growth, environmental stewardship, and social well-being. Our efforts are focused on finding ways to improve, enhance, and do better.

Figure 6: Strategic Plan Pillars

The decisions made by the Town are all examined through a sustainability lens, ensuring the Town's actions reflect a balanced focus on environmental stewardship, social well-being, and economic growth. To help define the intent of the pillars, Figure 7 below provides more details.

5.1.1 Our Vision and Core Purpose

East Gwillimbury's vision is to be a resilient, sustainable, and welcoming community that connects residents to each other, services, and opportunities. The core purpose is to deliver value for tax dollars, while providing quality services that the community wants and needs.

Figure 7: Defining Sustainability Pillars

Economic Sustainabilty			
Sound fiscal management Resources are managed efficiently, effectively, and transparently, so we deliver the best value,for tax dollars.	A vibrant local economy Residents have access to employment opportunities created by new investment, thriving local businesses, and support for entrepreneurship.		
Environmental Sustainability			
Caring for our natural environment Preserving, protecting, and enhancing our natural environment as we grow, by considering the environmental impacts of everything we do.	Addressing climate change Taking action through policy, programs, and the adoption of new technology to address the impacts of and reduce our contribution to climate change.		
Social Sustainabilty			
Inclusion and belonging The ability for everyone to participate fully in community life through the application of equity, diversity, and inclusion best practices and through active engagement and communication.	Building connections Delivering programs and services that provide opportunities and invites people to connect with the natural environment and with each other.		

5.1.2 Strategic Priorities

Strategic plan priorities were identified with key deliverables to ensure the plan has achievable outcomes. The priorities are:

Quality programs and services – provide value for tax dollars through the delivery of programs and services that support our economic, environmental, and social goals.

Responsible growth – ensure responsible and balanced growth management.

Environmental stewardship – preserve and protect our natural environment as we grow.

Build complete communities – build complete communities that support the ability for residents to connect to amenities, services, employment, and each other.

Culture of municipal excellence – foster a culture of service excellence, engagement, and transparency.

The strategic plan was developed by Council to guide the direction of the Town for the 2022 – 2026 term of council. It provides overall direction to guide decisions, projects and initiatives undertaken by the Town.

5.1.3 Core Values

Leveraging the strategic plan's sustainability lens and strategic priorities as a guide to developing and measuring service delivery, core values were identified that align staff work practices with community expectations.

Figure 8: Service Delivery Values

5.2 Community Service Levels

Community levels of service are a simple, plain language description or measure of the service that the community receives. For core asset categories (roads, bridges and culverts, water, wastewater, stormwater) the province, through O. Reg. 588/17, has provided qualitative descriptions that are required. For non-core asset categories, the Town has determined the qualitative descriptions that will be used to determine the community level of service provided. These descriptions can be found in the Levels of Service subsection within each asset category.

5.3 Technical Service Levels

Technical levels of service are a measure of key technical attributes of the service being provided to the community. These include mostly quantitative measures and tend to reflect the impact of the Town's asset management strategies on the physical condition of assets or the quality/capacity of the services they provide.

For core asset categories (roads, bridges and culverts, water, wastewater, stormwater) the province, through O. Reg. 588/17, has provided technical metrics that are required. For non-core asset categories, the Town has determined the technical metrics that will be used to determine the technical level of service provided. These metrics can be found in the Levels of Service subsection within each asset category in the appendices.

5.4 Current and Proposed Service Levels

East Gwillimbury is focused on measuring the current LOS provided to the community. Once the current LOS have been measured and trended, the Town plans to establish proposed LOS over a 10-year period, in accordance with O. Reg. 588/17.

Proposed levels of service should be realistic and achievable within the timeframe outlined by the Town. They should also be determined with consideration of a variety of community expectations, fiscal capacity, regulatory requirements, corporate goals, and long-term sustainability.

Once proposed LOS have been established, and prior to July 2025, East Gwillimbury must identify lifecycle management and financial strategies which allow these targets to be achieved.

6 Financial Impacts

Each year, the Town of East Gwillimbury makes important investments in its infrastructure's maintenance, renewal, rehabilitation, and replacement to ensure assets remain in a state of good repair. However, spending needs typically exceed fiscal capacity. In fact, most municipalities continue to struggle with annual infrastructure deficits. Achieving full-funding for infrastructure programs will take many years and should be phased-in gradually to reduce the burden on the community.

This financial strategy is designed for the municipality's existing asset portfolio and is premised on two key inputs: the average annual capital requirements and the average annual funding typically available for capital purposes. The annual requirements are based on the replacement cost of assets and their serviceable life, and where available, lifecycle modeling. This figure is calculated for each individual asset and aggregated to develop category-level values.

The annual funding typically available is determined by averaging historical capital expenditures on infrastructure, inclusive of any allocations to reserves for capital purposes.

Only reliable and predictable sources of funding are used to benchmark funds that may be available in any given year. The funding sources include:

- Revenue from taxation allocated to reserves for capital purposes
- Revenue from water and wastewater rates allocated to capital reserves
- The Canada Community Benefits Fund (CCBF), formerly the Federal Gas Tax Fund
- The Ontario Community Infrastructure Fund (OCIF)

Although provincial and federal infrastructure programs can change with evolving policy, CCBF and OCIF are considered permanent and predictable revenue sources.

6.1 Current Infrastructure Financial Requirements

The annual requirements represent the amount the Town should allocate annually to each asset category to meet replacement needs as they arise, prevent infrastructure backlogs, and achieve long-term sustainability.

Table 4 outlines the 10-year forecasted average annual capital requirements for existing assets in each asset category. Based on a replacement cost of \$2.24 billion, the 10-year annual capital requirements total \$18.8 million for all the asset categories analysed. The average annual capital requirement to 2051 totals \$32.1M.

The table also illustrates the system-generated, equivalent target reinvestment rate (TRR), calculated by dividing the 10-year forecasted annual capital requirements by the total replacement cost of each category. The cumulative target reinvestment for these categories is estimated at 0.8%. The target reinvestment rate to 2051 is 1.43%.

Asset Category	Replacement Cost	10-YR Forecasted Annual Capital Requirements	Target Reinvestment Rate
Road Network	\$394,041,807	\$3.80m	1.0%
Bridges and Culverts	\$31,435,909	\$0.58m	1.8%
Facilities	\$171,226,187	\$1.80m	1.1%
Land Improvements	\$52,085,163	\$0.87m	1.7%
Machinery and Equipment	\$8,005,278	\$0.93m	11.6%
Vehicles	\$17,226,080	\$1.90m	11.1%
Water Network	\$586,736,017	\$0.84m	0.1%
Wastewater Network	\$374,648,892	\$1.10m	0.3%
Stormwater Network	\$604,643,080	\$6.80m	1.1%
Total	\$2,240,048,414	\$18.80m	0.8%

Table 1 Average Appu	al Canital Pequirements
Table 4 Average Amua	al Capital Requirements

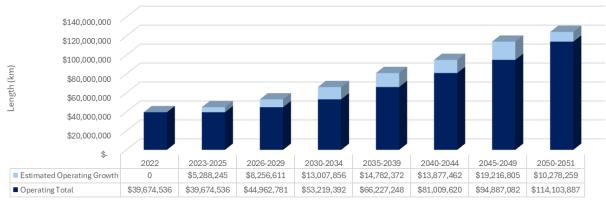
The 2016 version of the report card also contained recommended reinvestment rates that can also serve as benchmarks for municipalities. The CIRC suggest that, if increased, these reinvestment rates can "stop the deterioration of municipal infrastructure." The report card contains both a range for reinvestment rates that outlines the lower and upper recommended levels, as well as current municipal averages.

Table 5 summarizes how current capital funding levels compare with funding required for each asset category. At existing levels, the Town is funding 44% of its 10-year forecasted annual capital requirements for all infrastructure analyzed. This creates a total annual funding deficit of \$10.5 million.

Asset Category	10-YR Forecasted Annual Capital Requirements	Annual Funding Available	Annual Funding Deficit		
Road Network	\$3.80m	\$2.70m	\$1.1m		
Bridges and Culverts	\$0.58m	\$0.24m	\$0.34m		
Facilities	\$1.80m	\$1.80m	\$0.02m		
Land Improvements	\$0.87m	\$0	\$0.87m		
Machinery and Equipment	\$0.93m	\$0.28m	\$0.65m		
Vehicles	\$1.90m	\$1.10m	\$0.87m		
Water Network	\$0.84m	\$0.95m	-\$0.11m		
Wastewater Network	\$1.10m	\$1.20m	-\$0.06m		
Stormwater Network	\$6.80m	\$0	\$6.8m		
Total	\$18.80m	\$8.2m	\$10.5m		

Table 5 Current Funding Position vs Required Funding

6.2 Estimated Growth Financial Requirements


The Town's annual net operating costs will increase because of the capital programs proposed under this DC background study. The Town regularly conducts long-term financial analyses of its operating and capital programs to ensure long-term sustainability and affordability in maintaining service levels as the Town grows. This demonstrates the Town's commitment to ensuring the long-term financial sustainability of future capital projects prior to their approval.

6.2.1 Operating Estimates

Table 6: Operating Expenses by Service

Samiaaa	Service Level Trending									
Services —		2018		2019		2020		2021		2022
General Government										
Operating Spending	\$	8,382,299	\$	5,273,672	\$	6,726,648	\$	7,372,824	\$	8 , 685,924
Protection Services										
Operating Spending	\$	4,605,343	\$	5,190,212	\$	5,330,359	\$	5,471,097	\$	5,945,310
Transportation Services										
Operating Spending	\$	5,513,067	\$	6,556,067	\$	4,805,475	\$	5,937,177	\$	5,837,544
Environmental Services										
Operating Spending	\$	6,555,560	\$	8,586,056	\$	9,013,268	\$	9,935,697	\$	11,061,070
Recreation and Cultural Services										
Operating Spending	\$	6,436,431	\$	7,660,913	\$	6,731,662	\$	8,093,148	\$	8,144,688
Total										
Operating Spending	\$	31,492,700	\$	33,266,920	\$	32,607,412	\$	36,809,943	\$	39,674,536

The figure below shows that utilizing the 5-year average of operating expenses by service area the estimated operating expenses increase based on maintaining current levels of service.

Figure 9: Operating Estimates based on Population Growth

Operating Total Estimated Operating Growth

6.2.2 Capital Estimates

From the Development Charges background study, the capital expenditures estimated to be required are summarized in the table below.

Asset Category	Estimated Expense	Timeline
Facilities	\$178,992,400	2023 - 2032
Land Improvements	\$60,210,655	2023 - 2032
Vehicles	\$9,170,000	2023 - 2032
Machinery and Equipment	\$3,412,400	2023 - 2032
Roads and Related	\$363,451,298	2023 - 2051
Water Network	\$56,599,461	2023 - 2051
Wastewater Network	\$227,309,660	2023 - 2051
Total	\$899,145,874	

7 Recommendations

In November 2021, East Gwillimbury engaged PSD Citywide to develop an Asset Management Roadmap. This report summarizes the Town's current state of the asset management program, identifies gaps, and provides recommendations for program improvement spanning 2021 to 2025. Asset management maturity was assessed through a survey and staff correspondences, considering the maturity of data, asset management strategies, and information systems.

Strategic recommendations identified in general, include, further inventory data refinement, documentation and revisions to asset management strategies, and improvements to the inventory systems. Future requirements of Ontario Regulation 588/17 will require the Town to determine suitable, "proposed" levels of service.

Assets that are not assessed through technical studies are regularly inspected by staff or consultants to meet regulatory requirements or best management practices. These inspection methodologies have not yet been converted to a suitable % assessed metric as staff continue to search for best management

practices that meet the needs of the industry and asset management reporting requirements. Staff should continue to work with partners to ensure future condition assessments are aligned with best management practices and included in the inventory.

The proposed levels of service may require the Town to develop new lifecycle strategies and determine impacts on financial requirements and resulting strategy. Recommendations to meet these future Ontario Regulation 588/17 requirements are documented in the Town's Asset Management Roadmap 2021-2025.

Refer to Appendix K: Roadmap for the roadmap summary, timelines, and resources of the improvement plan.

The effectiveness of the AMP can be measured in the following ways:

- The accuracy of the forecasted costs identified in this plan as compared to those costs identified in the long-term financial plan
- The degree to which the existing and projected service levels and service risks and residual risks are incorporated into the Strategic Plan and business plans
- The number of infrastructure project business cases that utilize levels of service reporting and risk to identify and justify the business need of the infrastructure project.

The 2025 requirements of O. Reg. 588/17 will require the Town to develop a financial strategy that states the funding requirements to achieve the desired or "proposed" levels of service, funding available from sustainable funding sources, and identifies the gap between the funding need and funding available. To this end:

- The Town should identify all available sustainable funding sources.
- The Town should calculate a funding shortfall, defined as the difference between funding needs and sustainable funding available; and
- Finally, the Town should consider several options to close the gap. These
 options can consider changes to tax and rate increases, multiple funding
 horizons, reallocating budgets between asset categories, alternative asset
 lifecycle, holding and management strategies and acceptable residual levels of
 risk.

Appendix A: Levels of Service

	Services			Assets		Technical Levels of Service			ce Level Trendin		
		T		733613			2018	2019	2020	2021	2022
	ſ				Reliable	Average Condition	59.5	54.6	49.4	45.1	38.8
				Corporate Services	Sustainable	Average Risk	8.6	8.9	9.3	9.8	10.2
	Services				A.(Replacement Cost				\$	11,838,80
					Affordable	Annual Requirement				\$	
					Reliable	Average Condition	0.0	0.0	0.0	0.1	100.0
				Engineering and Public	Sustainable	Average Risk	0.0	0.0	0.0	0.0	5.1
			Facilities	Works	Affordable	Replacement Cost				\$	31,343,67
						Annual Requirement				\$	854,070
					Reliable	Average Condition	44.2	93.5	92.3	90.8	88.7
				Parks, Recreation and	Sustainable	Average Risk	2.5	4.5	4.5	4.6	4.8
eneral Government				Culture	Affordable	Replacement Cost				\$	3 1,567,40
	0299	Corporate Management				Annual Requirement				\$	
					Reliable	Average Condition	22.5	36.2	50.7	59.3	65.0
				Corporate Services	Sustainable	Average Risk	0.7	1.1	1.4	1.9	3.0
					Affordable	Replacement Cost				\$,
						Annual Requirement				\$, , ,
					Reliable	Average Condition	73.8	68.9	63.2	56.5	48.4
			Machinery and Equipment	Engineering and Public	Sustainable	Average Risk	4.3	4.3	4.3	6.1	6.1
				Works	Affordable	Replacement Cost				\$	
					Reliable	Annual Requirement Average Condition	96.8	93.7	89.3	83.5	76.0
				Parks, Recreation and	Sustainable	Average Condition	1.2	1.2	1.2	1.2	2.0
				Culture	Sustainable	Replacement Cost	1.2	1.2	1.2	1.2	
				Guitare	Affordable	Annual Requirement				4	,
					Reliable	Average Condition	93.4	86.6	76.6	61.9	37.1
					Sustainable	Average Risk					5.9
			Vehicles	Light Duty Vehicle		Replacement Cost	2.1	2.1 2.1 3.3 3.3	\$		
					Affordable	Annual Requirement				\$,
						Total Replacement Cost				\$,
						Total Annual Requirement					
			All		Affordable	Capital Spending	\$ 7,991,081	\$ 1,461,889	\$ 452,340 \$		
						Operating Spending		\$ 5,273,672		7,372,824 \$	

	Services 0410 Fire			Assets		Technical Levels of Service		Ser	vice Level Trenc	ling			
	Services			ASSELS		Technical Levels of Service	2018	2019	2020		2021		2022
					Reliable	Average Condition	94.1	96.0	95.4		94.7		93.6
	otective Services		Facilities	Fire and Emergency	Sustainable	Average Risk	5.3	5.3	5.4		5.4		5.5
			T definites	Services	Sustainable	Replacement Cost	0.0	0.0	5.4			\$	25,646,734
					Affordable	Annual Requirement						\$	540,599
					Reliable	Average Condition	0.0	0.0	0.0		0.0	<u> </u>	98.6
					Sustainable	Average Risk	0.0	0.0	0.0		0.0		1.2
				Corporate Services	oustainable	Replacement Cost	0.0	0.0	0.0			\$	27,000
					Affordable	Annual Requirement						\$	9,000
			Machinery and Equipment		Reliable	Average Condition	37.1	40.1	39.4		37.2	<u> </u>	34.9
				Fire and Emergency	Sustainable	Average Risk	0.9	1.1	1.4		1.6		2.1
				Services	oustainable	Replacement Cost	0.0	1.1	2.4			\$	2,543,992
				00111000	Affordable	Annual Requirement						\$	265,118
					Reliable	Average Condition	54.5	67.7	65.4		71.5	<u>+</u>	67.8
	0410	Fire			Sustainable	Average Risk	6.6	8.1	8.5		9.7		10.0
	0.110			Fire Truck		Replacement Cost	0.0	0.1	0.0			\$	11,013,530
					Affordable	Annual Requirement						\$	834,235
					Reliable	Average Condition	61.6	52.9	65.1		72.4	<u> </u>	80.9
Protective Services					Sustainable	Average Risk	1.5	2.1	2.4		3.0		2.7
			Vehicles	Light Duty Pick-up		Replacement Cost						\$	713,000
					Affordable	Annual Requirement						\$	101,857
					Reliable	Average Condition	98.6	97.2	95.4		93.0		90.1
					Sustainable	Average Risk	1.5	1.5	1.5		1.5		1.5
				Light Duty Vehicle		Replacement Cost						\$	21,550
					Affordable	Annual Requirement						\$	1,437
						Total Replacement Cost						\$	39,965,806
			A11		Afferral a la la	Total Annual Requirement						\$	1,752,246
			All		Affordable	Capital Spending	\$ 27,621 \$	1,708,449	\$ 110,889	\$	1,005,383	\$	99,097
						Operating Spending	\$ 4,284,571 \$	4,870,416	\$ 4,921,811	\$	5,033,698	\$	5,443,634
					Reliable	Average Condition	48.8	96.6	92.1		85.0		74.2
			Vehicles	Light Duty Dick up	Sustainable	Average Risk	0.9	1.8	1.8		2.4		2.4
			venicles	Light Duty Pick-up	Affordable	Replacement Cost						\$	170,000
	0460	Provincial Offences			Affordable	Annual Requirement						\$	24,286
	0460	Provincial Offences				Total Replacement Cost						\$	170,000
			A 11		Affordable	Total Annual Requirement						\$	24,286
			All		Affordable	Capital Spending	\$ - \$	48,776	\$ -	\$	-	\$	-
						Operating Spending	\$ 320,772 \$	319,796	\$ 408,548	\$	437,399	\$	501,676

	Services			Assets		Technical Levels of Service		Serv	rice Level Trendii	ıg		
	Services			ASSELS		Technical Levels of Service	2018	2019	2020	2021		2022
					Reliable	Average Condition	0.0	0.0	0.0	99.8		98.2
				Corporate Services	Sustainable	Average Risk	0.0	0.0	0.0	2.1		2.1
						Replacement Cost					\$	3,338
			Machinery and Equipment		Affordable	Annual Requirement					\$	417
					Reliable	Average Condition	94.0	89.8	84.1	76.8		67.2
				Engineering and Public	Sustainable	Average Risk	2.4	2.4	2.4	4.0		4.1
				Works	A.(()))	Replacement Cost					\$	201,000
					Affordable	Annual Requirement					\$	20,100
					Reliable	Average Condition	74.9	74.5	74.4	77.6		82.2
	0611	Roads - Paved			Sustainable	Average Risk	4.4	4.7	4.9	5.1		4.5
				HCB Roads	A.(()))	Replacement Cost					\$ 2	232,074,721
					Affordable	Annual Requirement					\$	4,255,458
			Road Network		Reliable	Average Condition	63.7	57.8	53.3	47.8		67.9
					Sustainable	Average Risk	6.0	6.7	7.5	8.0		5.7
				LCB Roads	A.(()))	Replacement Cost					\$	78,532,467
					Affordable	Annual Requirement					\$	1,717,874
						Total Replacement Cost					\$ 3	310,811,526
					A.(()))	Total Annual Requirement					\$	5,993,849
			All		Affordable	Capital Spending	\$ 1,294,564	\$ 1,426,238	\$ 4,124,392	\$ 2,818,400	\$	2,722,034
Transporation Services						Operating Spending	\$ 292,733	\$ 785,434	\$ 1,423,292	\$ 2,674,906	\$	2,371,919
					Reliable	Average Condition	91.35265203	97.9	78.4	77.8		76.7
					Sustainable	Average Risk	2.8	3.0	4.8	4.8		4.8
				Pedestrian Bridges	A.(()))	Replacement Cost					\$	2,960,000
					Affordable	Annual Requirement					\$	39,467
					Reliable	Average Condition	83.4	82.6	69.4	68.9		67.4
				De e d Duider e	Sustainable	Average Risk	6.4	6.7	9.4	9.4		9.4
				Road Bridges	A ##	Replacement Cost					\$	17,627,475
			Deiders and Outparts		Affordable	Annual Requirement					\$	240,188
			Bridges and Culverts		Reliable	Average Condition	67.0	66.5	77.9	77.2		75.5
	0613	Roads - Bridges and		Road Culverts (<3m)	Sustainable	Average Risk	5.9	0.0	0.0	0.0		0.0
	0613	Culverts		Road Culverts (<3m)	Afferdable	Replacement Cost					\$	1,525,000
					Affordable	Annual Requirement					\$	30,500
					Reliable	Average Condition	70.9	84.1	78.4	0.0		0.0
				Road Culverts (>3m)	Sustainable	Average Risk	5.5	6.2	0.0	0.0		0.0
					Affordable	Replacement Cost					\$	9,123,434
					Anoruable	Annual Requirement					\$	182,469
						Total Replacement Cost					\$	31,235,909
			All		Affordable	Total Annual Requirement					\$	492,623
			All		Anordable	Capital Spending	\$ -		\$ - :	\$ 1,521,505	\$	2,072,756
						Operating Spending	\$ 68,019	\$ 60,435	\$ - :	67,188	\$	9

	Services			Assets		Technical Levels of Service		Ser	vice Level Trend	ing		
	Services			Assels		reclificat Levels of Service	2018	2019	2020	2021		2022
					Reliable	Average Condition	46.9	61.5	58.3	52.4		60.5
			Machinery and Equipment	Engineering and Public	Sustainable	Average Risk	2.7	3.7	3.8	4.2		5.1
				Works		Replacement Cost					\$	1,830,066
					Affordable	Annual Requirement					\$	137,254
					Reliable	Average Condition	78.3	84.5	82.3	81.5		82.9
				-	Sustainable	Average Risk	2.0	1.9	2.0	2.0		2.0
				Road Barriers		Replacement Cost	210	1.0	2.0	2.0	\$	3,628,232
					Affordable	Annual Requirement					\$	120,941
					Reliable	Average Condition	17.4	25.7	27.6	76.2	Ψ	67.7
				-	Sustainable	Average Risk	3.3	3.5	3.6	1.8		2.2
			Road Network	Road Signs		Replacement Cost	0.0	0.0	0.0	210	\$	247,280
					Affordable	Annual Requirement					\$	24,728
					Reliable	Average Condition	78.4	81.2	82.5	86.1	Ψ	85.3
				-	Sustainable	Average Risk	2.7	2.7	3.0	3.1		3.1
				Sidewalks	oustainable	Replacement Cost	2.7	2.7	0.0	0.1	\$	39,752,737
					Affordable	Annual Requirement					\$	883,394
					Reliable	Average Condition	81.4	78.4	74.3	83.3	Ψ	75.8
Transporation Services	0614			-	Sustainable	Average Risk	3.7	3.7	4.3	5.3		6.6
		& Roadside		Heavy Duty Truck		Replacement Cost	017	017		0.0	\$	2,620,000
					Affordable	Annual Requirement					\$	262,000
					Reliable	Average Condition	92.3	85.2	74.6	57.4		31.8
					Sustainable	Average Risk	1.8	2.3	2.3	4.0		4.5
				Light Duty Pick-up		Replacement Cost	110	2.0	2.0		\$	185,000
					Affordable	Annual Requirement					\$	26,429
			Vehicles		Reliable	Average Condition	0.0	29.5	58.3	56.5	_	53.2
				-	Sustainable	Average Risk	0.0	0.6	1.2	1.2		1.2
				Light Duty Vehicle		Replacement Cost					\$	220,000
					Affordable	Annual Requirement					\$	27,571
					Reliable	Average Condition	35.9	44.3	52.0	45.2	–	34.1
					Sustainable	Average Risk	3.1	5.1	6.0	6.6		7.3
				Medium Duty Truck		Replacement Cost		0.2		0.0	\$	570,000
					Affordable	Annual Requirement					\$	92,679
						Total Replacement Cost					\$	49,053,315
						Total Annual Requirement					\$	1,574,995
			All		Affordable	Capital Spending	\$ 4,249,676	\$ 406,652	\$ 2 246 216	\$ 1,252,08	- T	2,316,194
						Operating Spending		\$ 4,192,439				2,162,590
						Operating openaling	φ 0,000,000	φ 4,102,400	φ 2,200,070	φ 1,000,04	Ψ	2,102,000

	Services			Assets		Technical Levels of Service			Sei	rvice Le	evel Trend	ling		
	Services			Assels		Technical Levels of Service	2018	2	2019	2	2020		2021	2022
					Reliable	Average Condition	0.0		0.0	3	31.5		31.2	98.9
			Machinery and Equipment	Engineering and Public	Sustainable	Average Risk	0.0		0.0	(0.4		0.4	1.7
				Works	Affordable	Replacement Cost								\$ 54,320
					Anoruable	Annual Requirement								\$ 5,432
					Reliable	Average Condition	69.7		95.4	9	92.0		87.2	80.9
	0621	Winter Control - except	Vehicles	Plow Truck	Sustainable	Average Risk	3.9		5.2	!	5.2		5.2	7.7
Transportion Convince	0021	sdwk	Venicies	FLOW HUCK	Affordable	Replacement Cost								\$ 250,000
					Anordable	Annual Requirement								\$ 25,000
Transporation Services						Total Replacement Cost								\$ 304,320
			All		Affordable	Total Annual Requirement								\$ 30,432
Transporation Services			Au		Anoruable	Capital Spending	\$ -	\$	-	\$	17,120	\$	-	\$ 37,832
Transporation Services	_					Operating Spending	\$ 649,500	\$	960,744	\$	549,169	\$	643,873	\$ 675,211
					Reliable	Average Condition	82.1		80.0	8	85.1		85.1	83.8
			Road Network	Streetlights	Sustainable	Average Risk	1.5		1.5		1.6		1.7	1.7
			nodu Network	Succugius	Affordable	Replacement Cost								\$ 39,806,370
	0650	Street Lighting			Anordable	Annual Requirement								\$ 1,990,318
		Succusing				Total Replacement Cost								\$ 39,806,370
			All		Affordable	Total Annual Requirement								\$ 1,990,318
			Au		Anordable	Capital Spending	\$ 164,401	\$	-	\$ 1	,111,847	\$	464,058	\$ 1,075,883
						Operating Spending	\$ 533,422	\$	557,015	\$	577,941	\$	615,361	\$ 627,815

	Services			Assets		Technical Levels of Service		Ser	vice Level Trend	ing		
	Services			Assels		Technical Levels of Service	2018	2019	2020	2021		2022
					Reliable	Average Condition	80.2	88.9	88.0	86.9	1	85.9
				Manholes	Sustainable	Average Risk	1.2	1.3	1.3	1.4	1	1.5
				Mannoles	Affordable	Replacement Cost					\$	28,314,312
					Alloluable	Annual Requirement					\$	566,286
					Reliable	Average Condition	82.6	99.0	98.7	98.4		97.9
				Pumping Stations	Sustainable	Average Risk	4.5	5.4	5.4	5.4	1	5.4
				Fulliping Stations	Affordable	Replacement Cost					\$	9,077,286
			Wastewater Network		Anoruable	Annual Requirement					\$	226,932
			Wastewater Network		Reliable	Average Condition	89.0	95.1	95.1	94.6		94.2
Environmental Services	0811	Wastewater Collection/		Sewer Services	Sustainable	Average Risk	1.1	1.2	1.2	1.2		1.2
Environmental Services	0011	Conveyance		Sewer Services	Affordable	Replacement Cost					\$	19,867,918
					Alloluable	Annual Requirement					\$	331,132
					Reliable	Average Condition	83.7	90.6	90.3	89.6	i	88.7
				Wastewater Mains	Sustainable	Average Risk	1.6	1.8	1.8	1.8	1	1.9
				Wastewater Mains	Affordable	Replacement Cost					\$ 3	308,721,362
					Anoruable	Annual Requirement					\$	5,990,932
						Total Replacement Cost					\$ 3	365,980,878
			A11		Affordable	Total Annual Requirement					\$	7,115,282
			All		Anordable	Capital Spending	\$ 1,085,325	\$-	\$ 7,416,730	\$ 2,673,358	\$	4,150,277
						Operating Spending	\$ 2,386,071	\$ 3,292,679	\$ 3,848,133	\$ 4,844,790	\$	4,465,678

	Services 0821 Urban Storm Sewer Sys			Assets		Technical Levels of Service		S	ervice Level Tren	ding		
	Services			ASSELS		Technical Levels of Service	2018	2019	2020	2021		2022
					Reliable	Average Condition	78.7	88.0	87.3	86.5		85.3
				Catch Basins	Sustainable	Average Risk	1.3	1.4	1.4	1.5		1.5
				Calcii Dasilis	Afferdable	Replacement Cost					\$	35,268,779
					Affordable	Annual Requirement					\$	705,376
					Reliable	Average Condition	90.2	71.6	71.7	70.7		68.6
				Outranta	Sustainable	Average Risk	1.8	2.8	2.9	2.9		2.9
				Culverts	Affardable	Replacement Cost					\$	33,168,026
					Affordable	Annual Requirement					\$	663,361
					Reliable	Average Condition	78.3	88.4	87.5	87.8		86.7
				Day 0 Mat Days da	Sustainable	Average Risk	5.0	5.6	5.7	6.0		6.1
				Dry & Wet Ponds	A.(()))	Replacement Cost					\$	37,593,596
					Affordable	Annual Requirement					\$	751,872
					Reliable	Average Condition	0.0	86.7	100.0	99.9		99.8
			Oto managements in Nilo to complete	O a diama Dita	Sustainable	Average Risk	0.0	1.0	1.1	1.1		1.1
			Stormwater Network	Soakaway Pits	A ##	Replacement Cost					\$	618,570
	0004				Affordable	Annual Requirement					\$	12,371
	0821	Urban Storm Sewer System			Reliable	Average Condition	78.9	88.7	87.8	87.0		85.9
					Sustainable	Average Risk	2.5	2.8	2.9	2.9		3.0
				Storm Mains	A.(()))	Replacement Cost					\$	436,354,506
F · · · · · · ·					Affordable	Annual Requirement					\$	8,727,090
Environmental Services					Reliable	Average Condition	80.1	89.8	89.0	88.5		87.5
				Storm Maintenance	Sustainable	Average Risk	1.5	1.6	1.6	1.7		1.7
				Holes	A.(()))	Replacement Cost					\$	41,721,344
					Affordable	Annual Requirement					\$	834,427
					Reliable	Average Condition	0.0	0.0	0.0	0.0		0.0
					Sustainable	Average Risk	0.0	0.0	0.0	0.0		0.0
				Storm Services	A.(()))	Replacement Cost					\$	19,201,859
					Affordable	Annual Requirement					\$	326,201
						Total Replacement Cost					\$	603,926,680
					A. (C. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Total Annual Requirement					\$	12,020,697
			Al	l	Affordable	Capital Spending	\$ 1,877,420	6 \$	\$ 7,904,765	\$ 3,648,1	75 \$	5,133,370
						Operating Spending	\$ -	\$	\$ 1,611	. \$ 61,3	76 \$	54,687
					Reliable	Average Condition	83.5	87.7	88.5	88.4		87.4
					Sustainable	Average Risk	1.2	1.3	1.3	1.3		1.4
			Stormwater Network	Headwalls		Replacement Cost					\$	716,400
					Affordable	Annual Requirement					\$	14,328
	0822	Rural Storm Sewer System				Total Replacement Cost					\$	716,400
						Total Annual Requirement					\$	14,328
			Al	l	Affordable	Capital Spending	\$ -	\$	\$ 171,457	'\$	- \$	52,226
						Operating Spending	\$ -	\$	\$ 35,113		50 \$	41,514

	Services vironmental Services 0832 Water Distribution/Transmiss			Acceto		Technical Levels of Service		Sei	vice Level Trend	ling	
				Assets		Technical Levels of Service	2018	2019	2020	2021	2022
					Reliable	Average Condition	0.0	0.0	0.0	99.8	98.2
				Corporato Sonvisoo	Sustainable	Average Risk	0.0	0.0	0.0	2.1	2.1
				Corporate Services	Affordable	Replacement Cost					\$ 3,338
			Machinery and Equipment		Alloluable	Annual Requirement					\$ 417
			Machinery and Equipment		Reliable	Average Condition	31.1	27.8	22.6	24.2	31.0
				Engineering and Public	Sustainable	Average Risk	0.9	1.0	1.3	1.4	0.9
				Works	Affordable	Replacement Cost					\$ 158,065
Environmental Services	0000	Water			Alloluable	Annual Requirement					\$ 16,753
Environmental Services	0032	Distribution/Transmission			Reliable	Average Condition	48.8	46.7	93.2	87.1	77.6
				Light Duty Pick-up	Sustainable	Average Risk	0.9	0.9	1.8	2.4	2.4
					Affordable	Replacement Cost					\$ 180,000
			Vehicles		Alloluable	Annual Requirement					\$ 25,714
			Venicies		Reliable	Average Condition	0.0	0.0	0.0	0.0	0.0
				Light Duty Vehicle	Sustainable	Average Risk	0.0	0.0	0.0	0.0	0.0
					Affordable	Replacement Cost					\$ 95,000
					Anordable	Annual Requirement					\$ 13,571

	Services			Assets		Technical Levels of Service		Serv	ice Level Trendi	ng	
	Jeivices	1		Assels			2018	2019	2020	2021	2022
				Automatic Fluching	Reliable	Average Condition	93.8	96.5	95.8	94.9	93.8
				Automatic Flushing – Devices –	Sustainable	Average Risk	1.1	1.1	1.1	1.1	1.2
				Devices	Affordable	Replacement Cost					\$ 378,550
						Annual Requirement					\$ 12,618
					Reliable	Average Condition	100.0	99.9	99.7	99.3	98.9
				Bulk Water Filling	Sustainable	Average Risk	2.1	2.1	2.1	2.1	2.1
				Station	Affordable	Replacement Cost Annual Requirement					\$ 93,430 \$ 3,114
					Reliable	Average Condition	81.8	92.6	92.4	92.8	\$ 3,114 91.5
					Sustainable	Average Condition	1.1	1.2	1.2	1.1	1.2
				Curb Stops		Replacement Cost		1.2	1.2		\$ 3,472,488
					Affordable	Annual Requirement					\$ 115,750
					Reliable	Average Condition	79.4	90.4	90.7	89.9	88.9
				Hydrants	Sustainable	Average Risk	1.2	1.3	1.2	1.3	1.3
				nyurants	Affordable	Replacement Cost					\$ 20,969,602
						Annual Requirement					\$ 698,987
					Reliable	Average Condition	86.7	85.5	86.7	90.0	88.4
			Sampling Stations	Sustainable	Average Risk	1.0	1.0	1.0	1.1	1.1	
			Mater National		Affordable	Replacement Cost					\$ 331,674
			Water Network		Reliable	Annual Requirement Average Condition	81.3	92.3	91.1	91.7	\$ 11,056 90.3
Environmental Services	0832	Water		-	Sustainable	Average Condition	1.1	1.2	1.2	1.2	1.3
	0002	Distribution/Transmission		Water Chambers		Replacement Cost		1.2	1.2	1.2	\$ 13,109,960
					Affordable	Annual Requirement					\$ 438,952
					Reliable	Average Condition	79.1	86.8	86.1	85.0	83.8
				Water Mains	Sustainable	Average Risk	1.9	2.0	2.0	2.1	2.1
				Water Mains	Affordable	Replacement Cost					\$ 272,193,341
						Annual Requirement					\$ 3,274,607
					Reliable	Average Condition	43.6	72.1	83.2	97.1	95.7
				Water Meters	Sustainable	Average Risk	0.5	0.8	0.9	1.1	1.1
					Affordable	Replacement Cost					\$ 3,576,224 \$ 238,415
					Reliable	Annual Requirement	81.8	92.3	91.8	91.3	\$ 238,415 90.6
				Water Service	Sustainable	Average Condition Average Risk	1.4	92.3	1.5	1.5	90.6
				Connections		Replacement Cost	1.4	1.0	1.5	1.0	\$ 250,692,502
					Affordable	Annual Requirement					\$ 4,178,208
					Reliable	Average Condition	82.4	91.9	91.5	91.4	90.0
				Water Values	Sustainable	Average Risk	1.2	1.2	1.2	1.2	1.3
				Water Valves	Affordabla	Replacement Cost					\$ 21,918,246
					Affordable	Annual Requirement					\$ 730,608
						Total Replacement Cost					\$ 587,172,420
			Δ	u	Affordable	Total Annual Requirement					\$ 9,758,772
					Anoradoto	Capital Spending	\$ 1,684,035		\$ 4,549,699		
						Operating Spending	\$ 4,169,489	\$ 5,293,377	\$ 5,103,301	\$ 4,815,258	\$ 6,499,191

Environmental Services	Services		Assets		Technical Levels of Service		Se	rvice Level Trend	ling		
	Services		Assels		Technical Levels of Service	2018	2019	2020	2021		2022
				Reliable	Average Condition	0.0	98.6	\$ 87	55.3		0.0
			Corporate Services	Sustainable	Average Risk	0.0	0.0	1.2	2.8		0.0
				Affordable	Replacement Cost					\$	21,000
		Machinery and Equipment		Alloluable	Annual Requirement					\$	7,000
				Reliable	Average Condition	0.0	0.0	99.7	97.7	\$	93
			Engineering and Public	Sustainable	Average Risk	0.0	0.0	1.9	1.9	\$	2
			Works	Affordable	Replacement Cost					\$	14,506
Environmental Services	0898 Other - Vehicles & Machinery			Anoruable	Annual Requirement					\$	2,072
				Reliable	Average Condition	0.0	0.0	0.0	0.0	\$	-
		Vehicles	Light Duty Pick-up	Sustainable	Average Risk	6.3	6.3	6.3	6.3	\$	6
		Venicles	Light Duty Fick-up	Affordable	Replacement Cost					\$	75,000
				Anoruable	Annual Requirement					\$	15,000
					Total Replacement Cost					\$	110,506
		All		Affordable	Total Annual Requirement					\$	24,072
Environmental Services		All		Anoruable	Capital Spending	\$ -	\$ -	\$-	\$	- \$	-
					Operating Spending	\$ -	\$ -	\$-	\$	- \$	-

	Somicos			Assets		Technical Levels of Service		Se	vice Level Trend	ling	
	Services			A35615		Technical Levels of Service	2018	2019	2020	2021	2022
					Reliable	Average Condition	36.7	39.2	44.0	51.1	57.7
	n & Cultural 1610 Parks			Fencing	Sustainable	Average Risk	3.7	4.0	4.2	4.3	4.5
						Replacement Cost					\$ 4,335,497
					Affordable	Annual Requirement					\$ 171,545
					Reliable	Average Condition	69.2	87.8	92.2	94.1	99.0
				Landscaping & Natural	Sustainable	Average Risk	0.7	0.9	0.9	1.0	1.0
				Capital		Replacement Cost					\$ 10,479,167
				Cupitat	Affordable	Annual Requirement					\$ 178,372
	1610 Parks Land Imp			Reliable	Average Condition	27.0	52.6	56.5	59.1	71.0	
			Lights, Fixtures &	Sustainable	Average Risk	1.5	1.9	2.0	1.9	2.1	
			Electrical		Replacement Cost	1.0	210	2.0	110	\$ 3,277,000	
			2.000.000	Affordable	Annual Requirement					\$ 109,233	
				Reliable	Average Condition	48.6	63.7	68.2	74.0	78.6	
				Sustainable	Average Risk	1.3	1.6	1.8	1.9	2.1	
			Park Furnishings		Replacement Cost	1.0	1.0	1.0	1.0	\$ 1,490,933	
					Affordable	Annual Requirement					\$ 77,111
				Reliable	Average Condition	55.0	68.8	80.5	84.3	96.0	
Recreation & Cultural	1610	Parks	Land Improvements	Park Shelters &	Sustainable	Average Risk	1.9	2.4	2.8	3.1	3.5
Services	1010	i unto	Land improvemente	Structures		Replacement Cost	210		2.0	0.12	\$ 2,434,352
					Affordable	Annual Requirement					\$ 52,587
					Reliable	Average Condition	37.2	43.9	50.4	69.8	75.2
				Parklands, Paths,	Sustainable	Average Risk	3.7	4.2	4.4	5.4	5.6
				Trails & Parking Lots		Replacement Cost	017			0.1	\$ 21,200,568
					Affordable	Annual Requirement					\$ 903,883
					Reliable	Average Condition	51.6	61.1	62.1	69.8	66.3
					Sustainable	Average Risk	4.5	5.3	6.3	7.4	8.0
				Playground Equipment		Replacement Cost					\$ 1,900,000
					Affordable	Annual Requirement					\$ 126,667
					Reliable	Average Condition	50.7	60.8	71.4	70.6	72.7
					Sustainable	Average Risk	4.0	4.4	4.7	4.8	5.0
				Sport Fields & Courts		Replacement Cost					\$ 6,933,225
					Affordable	Annual Requirement					\$ 241,243
					Reliable	Average Condition	45.6	49.8	47.6	45.2	78.2
					Sustainable	Average Risk	1.2	1.2	1.2	1.2	1.6
				Water Features		Replacement Cost					\$ 24,600
					Affordable	Annual Requirement		1			\$ 984

	eation & Cultural Services 1610 Parks			Assets		Technical Levels of Service		Serv	vice Level Trendi	ng		
				Assets		Technical Levels of Service	2018	2019	2020	2021		2022
					Reliable	Average Condition	94.4	92.0	88.7	84.5		79.2
				Engineering and Public	Sustainable	Average Risk	1.8	1.8	1.8	2.5		2.5
				Works		Replacement Cost			-	-	\$	32,000
			Machinery and Equipment		Affordable	Annual Requirement					\$	2,600
	creation & Cultural				Reliable	Average Condition	30.4	31.6	51.9	50.2	-	52.9
				Parks, Recreation and	Sustainable	Average Risk	3.1	3.5	4.1	4.4		4.6
				Culture	A.(()))	Replacement Cost					\$	1,374,407
					Affordable	Annual Requirement					\$	124,755
					Reliable	Average Condition	89.3	83.5	76.0	66.1	-	52.7
				Light Duty Dials up	Sustainable	Average Risk	1.8	1.8	2.9	2.9		4.0
Recreation & Cultural				Light Duty Pick-up	Afferdable	Replacement Cost					\$	90,000
	1610 Parks	Parks			Affordable	Annual Requirement					\$	9,000
OCTVICES					Reliable	Average Condition	66.7	90.3	82.0	68.9		46.9
			Vehicles	Light Duty Vehicle	Sustainable	Average Risk	1.5	2.1	3.0	3.0		5.2
			Venicies	Light Duty vehicle	Affordable	Replacement Cost					\$	98,000
					Alloluable	Annual Requirement					\$	15,600
					Reliable	Average Condition	57.5	53.9	48.3	77.2		62.3
				Medium Duty Truck	Sustainable	Average Risk	1.7	2.2	2.2	4.4		5.4
				Medium Duty Huck	Affordable	Replacement Cost					\$	325,000
					Alloluable	Annual Requirement					\$	46,429
						Total Replacement Cost					\$	53,994,748
			All		Affordable	Total Annual Requirement					\$	2,060,008
			A.(Anoradbic	Capital Spending	\$ 221,964					93,075
						Operating Spending	\$ 1,921,444	\$ 2,486,406	\$ 2,092,630	\$ 3,027,43	31 \$	2,677,545

	Services			Assets		Technical Levels of Service		Se	vice Level Trend	ling		
	Jervices			A33013		Technical Levels of Service	2018	2019	2020	2021		2022
					Reliable	Average Condition	97.2	95.4	93.0	90.1		86.6
			Machinery and Equipment	Parks, Recreation and	Sustainable	Average Risk	2.1	2.1	2.1	2.1		2.1
				Culture		Replacement Cost					\$	80,000
	1620	Recreation Programs			Affordable	Annual Requirement					\$	5,333
						Total Replacement Cost					\$	80,000
						Total Annual Requirement					\$	5,333
			All		Affordable	Capital Spending	\$ -	\$ -	\$ -	\$	- \$	-
						Operating Spending		\$ 1,502,800				1,329,434
					Reliable	Average Condition	5.3	2.5	2.3	2.0	<u> </u>	1.6
					Sustainable	Average Risk	0.8	1.0	1.0	1.0		1.0
				Corporate Services		Replacement Cost					\$	28,963
					Affordable	Annual Requirement					\$	3,558
			Facilities		Reliable	Average Condition	56.6	55.4	52.6	49.8		46.8
			Parks, Recreation and	Sustainable	Average Risk	10.0	10.2	10.4	10.8	-	10.8	
			Culture		Replacement Cost	2010			1010	\$	99,657,811	
				Affordable	Annual Requirement					\$	2,089,106	
					Reliable	Average Condition	99.1	97.2	94.3	90.1		84.6
Recreation & Cultural				Corporate Services	Sustainable	Average Risk	2.3	2.3	2.3	2.3		2.3
Services						Replacement Cost					\$	21,617
					Affordable	Annual Requirement					\$	2,162
			Machinery and Equipment		Reliable	Average Condition	56.6	\$ 50	76.6	68.2		59.9
				Parks, Recreation and	Sustainable	Average Risk	1.3	2.2	2.6	3.3		4.3
	1634	Rec. Fac All Other		Culture		Replacement Cost					\$	161,901
					Affordable	Annual Requirement					\$	20,449
					Reliable	Average Condition	71.7	68.4	88.7	81.6		71.4
					Sustainable	Average Risk	1.3	1.3	1.8	2.6	-	2.6
				Light Duty Pick-up		Replacement Cost					\$	240,000
			N 1 ' 1		Affordable	Annual Requirement					\$	30,214
			Vehicles		Reliable	Average Condition	0.0	0.0	99.7	97.7		93.4
			1		Sustainable	Average Risk	0.0	0.0	2.8	2.8	-	2.8
				Medium Duty Truck	A.(()))	Replacement Cost					\$	210,000
					Affordable	Annual Requirement					\$	30,000
						Total Replacement Cost					\$	100,320,293
						Total Annual Requirement					\$	2,175,489
			All		Affordable	Capital Spending	\$ 542,507	\$ 176,176	\$ 609,052	\$ 1,368,5	73 \$	2,044,270
						Operating Spending		\$ 2,218,324				2,393,136

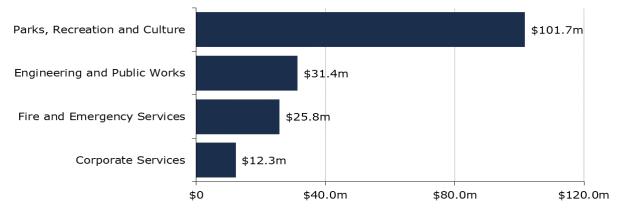
	Services		Assets			Technical Levels of Service	Service Level Trending					
Services		ASSEIS			Technical Levels of Service	2018	2019	2020	2021	2022		
					Reliable	Average Condition	0.0	0.0	0.0	0.0	16.8	
			Machinery and Equipment	achinery and Equipment Library	Sustainable	Average Risk	0.0	0.0	0.0	0.0	0.2	
Recreation & Cultural					Affordable	Replacement Cost					\$ 562,714	
Services	1640	Library			Alloluable	Annual Requirement					\$ 102,469	
Services						Total Replacement Cost					\$ 562,714	
			All		Affordable	Total Annual Requirement					\$ 102,469	
			Au	Au		Capital Spending	\$ 165,645	\$ 223,615	\$ 95,376	\$ 20,964	\$ 94,730	
						Operating Spending	\$ 1,425,035	\$ 1,453,383	\$ 1,601,386	\$ 1,775,540	\$ 1,744,573	

Appendix B: Facilities

State of the Infrastructure

The Town of East Gwillimbury owns and maintains several facilities that provide key services to the community. These include:

- administrative offices
- fire stations
- public works garages and storage sheds
- community centres
- parks
- libraries & museums


The state of the infrastructure for the facilities is summarized in the following table.

Replacement Cost	Condition	Financial Capacity	
\$171,226,187	Good (68%)	Annual Requirement:	\$3,899,278
		Funding Available:	\$1,805,738
		Annual Deficit:	\$2,093,540

Inventory and Valuation

The graph below displays the total replacement cost of each asset segment in East Gwillimbury's buildings inventory.

Each asset's replacement cost should be reviewed periodically to determine whether adjustments are needed to represent capital requirements more accurately.

Asset Condition

These assets are now componentized in detail which improves the accuracy of projections. The graph below visually illustrates the average condition for each asset segment on a scale of very good to very poor.

Figure 11 Facilities Condition Breakdown

Facility inspections are conducted to comply with Health and Safety standards. Regulatory obligations are being met and public safety is not impacted by the condition of Town facilities.

To ensure that the municipal buildings continue to provide an acceptable level of service, the Town should monitor the average condition of all assets. If the average condition declines, staff should re-evaluate their lifecycle management strategy to determine the best combination of maintenance, rehabilitation, and replacement activities is required to increase the overall condition. Each asset's estimated useful life should also be reviewed to determine whether adjustments need to be made to better align with the observed service life.

Accurate and reliable condition data allows staff to determine the remaining service life of assets and identify the most cost-effective approach to managing assets.

Lifecycle Management

To ensure that municipal assets are performing as expected and meeting the needs of customers, it is important to establish a lifecycle management strategy to proactively manage asset deterioration.

Maintenance of buildings is dealt with on a case-by-case basis. There are lists of preventative maintenance contracts and routine Health and Safety checks are performed.

A 10-year capital plan is in place based on updates to the building condition assessment completed previously and used to componentize the facilities in the Town.

Forecasted Capital Requirements

The annual capital requirement represents the average amount per year that East Gwillimbury should allocate towards funding rehabilitation and replacement needs. The following graph identifies capital requirements to the year 2051. The forecasted requirements trend line represents the average capital requirements to 2051 at \$3.9 million.

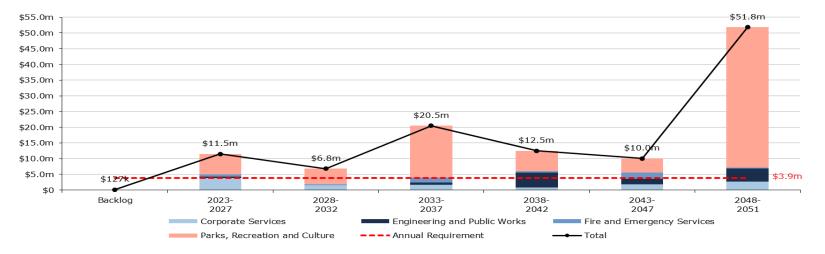


Figure 12 Facilities Forecasted Capital Replacement Requirements to 2051

Table 7 below summarizes the projected cost of lifecycle activities (capital replacement only) that may need to be undertaken over the next 10 years to support current levels of service. These projections are generated in Citywide and rely on the data available in the asset register.

Table 7 Buildings System-Generated 10-Year Capital Costs

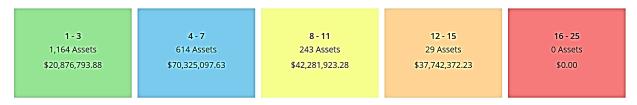
Segment	Total	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Corporate Services	\$5.3m	\$1.9m	\$0.6m	\$1.1m	\$0.06m	\$0.1m	\$190k	\$0.4m	\$0.5m	\$0.3m	\$0.05m
Engineering and Public Works	\$470k	\$0.0m	\$0.0m	\$0.34m	\$0.0m	\$0.0m	\$0.0m	\$0.08m	\$0.0m	\$0.0m	\$0.0m
Fire and Emergency Services	\$1.0m	\$0.6m	\$0.09m	\$0.08m	\$0.0m	\$0.0m	\$0.06m	\$0.0m	\$0.1m	\$0.0m	\$0.0m
Parks, Recreation and Culture	\$11.5m	\$2.2m	\$1.9m	\$0.25m	\$0.6m	\$1.5m	\$0.7m	\$1.2m	\$1.1m	\$0.4m	\$1.6m

Risk Management

The risk matrix provides a visual representation of the relationship between the probability of failure and the consequence of failure for the assets within facilities based on available inventory data.

Risk Criteria

The probability of failure was calculated using the following:


Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			80-100	1
Churchten			60-79	2
Structural (80%)	Condition	100%	40-59	3
(80%)			20-39	4
		_	0-19	5
	Extreme Rainfall	20%	1 - 5	1 - 5
Climate	Extreme Snow	20%	1 - 5	1 - 5
Change	Freeze / Thaw	20%	1 - 5	1 - 5
(20%)	Extreme Wind	20%	1 - 5	1 - 5
	Extreme Heat	20%	1 - 5	1 - 5

The consequences of failure for facilities was calculated using the following criteria:

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			<25,000	1
Financial	Deplessment		25,000 - 150,000	2
Financial (40%)	Replacement Cost	100%	150,000 - 500,000	3
(4070)	COSC		500,000 - 1,000,000	4
			>1,000,000	5
			Furnishings, Exterior, Site Improvement	1
		100%	Interior Finishes, Site Mechanical, Site Electrical	2
Operational	Component		Interior, Staircases, Equipment, Special Construction	3
(40%)	Group		Exterior Closures & Enclosures, Roofing, Plumbing, HVAC, Electrical, Conveyance	4
			Foundations, Basement Construction, Superstructure, Fire Protection	5
Comilar			Community & Recreation	2
Service	Service	100%	Administration	3
Delivery (20%)	Service	100%	Fire & Protection	5
(2070)			Operations Centre	5

This is a high-level model that has been developed based on information currently available and should be reviewed and adjusted to reflect an evolving understanding of both the probability and consequences of asset failure.

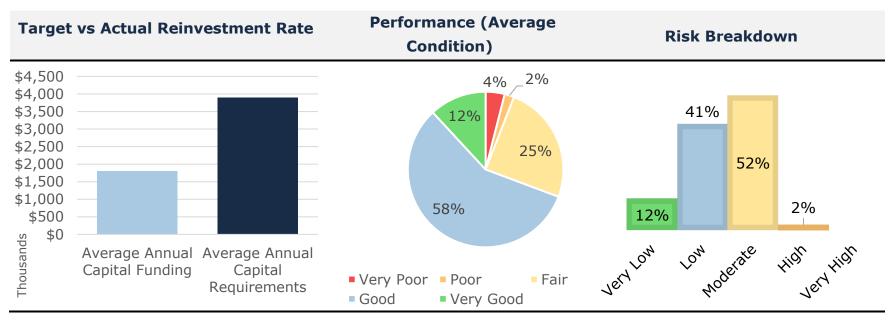
The identification of critical assets allows the Town to determine risk mitigation strategies and treatment options. Risk mitigation may include asset-specific lifecycle strategies, condition assessment strategies, or simply the need to collect better asset data.

Growth Management

Trends

Drivers affecting demand include things such as population change, regulations, changes in demographics, seasonal factors, vehicle ownership rates, consumer preferences and expectations, technological changes, economic factors, agricultural practices, environmental awareness, etc.

Population and Economic Growth Forecasts


Growth of population within the Town results in a need to acquire new facility infrastructure. Between DC bylaw and developer contributed assets, the core infrastructure is expected to more than double by 2051, with significant growth occurring between years 2026 and 2040. This growth generally follows the expected population growth. Growth outlined in the DC Background study estimates increases because of growth to maintain current levels of service.

From 2023 to 2032 there is estimated to be \$178,992,400 in growth relative to facilities based on maintaining the current levels of service.

Levels of Service

By comparing the cost, performance (average condition) and risk year-over-year, the Town will be able to evaluate how their services/assets are trending. The Town will use this data to set a target level of service and determine proposed levels for the regulation by 2025.

Figure 14: Facilities Strategic Levels of Service

Community Levels of Service

The qualitative descriptions that determine the community levels of service provided by municipal facilities are based on the types of facilities outlined below:

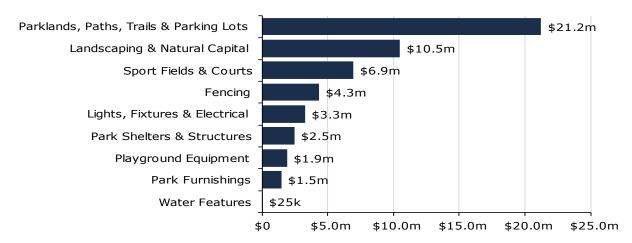
- administrative offices general government services
- Fire emergency services
- public works garages and storage sheds roadway and winter control services
- community centres recreation and cultural services

Technical Levels of Service

The quantitative metrics that determine the technical level of service provided by East Gwillimbury are going to be the analysis of reinvestment rates, average condition and average asset risk levels. These can be seen by service area in Appendix A: Levels of Service.

Appendix C: Land Improvements

State of the Infrastructure

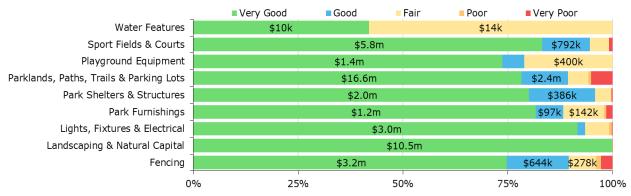

East Gwillimbury owns several assets that are considered Land Improvements, which include park and sports field assets like ball diamonds, soccer fields, playground equipment, water features and courts. Other assets that are also included in land improvements are landscaping and natural capital, park lighting and fencing. The state of the infrastructure for the land improvements is summarized in the following table.

Replacement Cost	Condition	Financial Capacity	
\$52,085,163	Very Good (86%)	Annual Requirement:	\$1,630,861
	(80%)	Funding Available:	\$0
		Annual Deficit:	\$1,630,861

Inventory and Valuation

The graph below displays the total replacement cost of each asset segment in the Town's land improvement inventory.

Figure 15 Land Improvements Replacement Cost


Each asset's replacement cost should be reviewed periodically to determine whether adjustments are needed to represent capital requirements more accurately.

Asset Condition

To ensure that the Town's land improvements and parks continue to provide an acceptable level of service, East Gwillimbury should monitor the average condition

of all assets. If the average condition declines, staff should re-evaluate their lifecycle management strategy to determine the combination of maintenance, rehabilitation, and replacement activities required to increase the overall condition.

The graph below visually illustrates the average condition for each asset segment on a scale of Very Good to Very Poor.

Each asset's estimated useful life should also be reviewed periodically to determine whether adjustments need to be made to better align with the observed length of service life for each asset type.

Accurate and reliable condition data allows staff to determine the remaining service life of assets and identify the most cost-effective approach to managing assets. The current approach varies significantly due to the varied assets included in this category; Town staff have worked on improving the inventory values by assessing asset conditions.

Lifecycle Management

To ensure that municipal assets are performing as expected and meeting the needs of residents, it is important to establish a lifecycle management strategy to proactively manage asset deterioration. Most maintenance is done through external contracting, and staff perform routine maintenance. Rehabilitation and replacements are performed reactively, with asset failure. Playground structures are monitored and are proactive replacement is scheduled to meet health and safety requirements of the Canadian Standards Association (CSA).

Forecasted Capital Requirements

The annual capital requirement represents the average amount per year that should be allocated towards funding rehabilitation and replacement needs. The following graph identifies the forecasted capital requirements to the year 2051. The forecasted requirements trend line represents the average annual capital requirements which are \$1.6 million.

Error! Reference source not found.

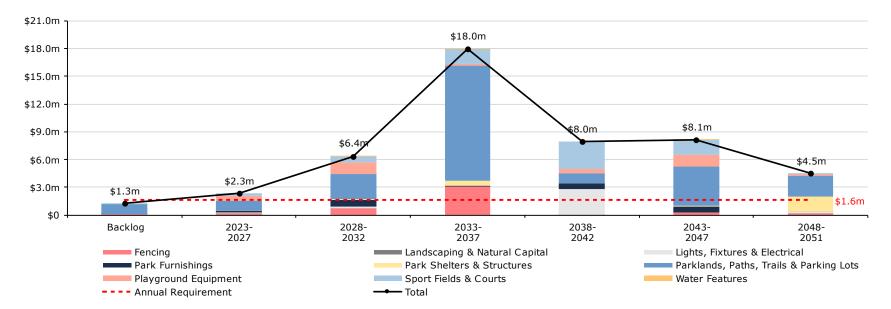


Figure 17 Land Improvements Forecasted Capital Replacement Requirements to 2051

Table 8 below summarizes the projected cost of lifecycle activities (capital replacement only) that may need to be undertaken over the next 10 years to support current levels of service. These projections are generated in Citywide and rely on the data available in the asset register.

Table 8 Land Improvements System-Generated 10-Year Capital Costs

Segment	Total	2023	2024	2025	2026	2027	2028	2029 2	030	2031	2032
Fencing	\$0.95m	\$0	\$0.03m	\$0.03m	\$0.16m	\$0.02m	\$0.1m	\$0\$	0.62m	\$0	\$0
Landscaping & Natural Capital	\$0.01 m	\$0.07m	\$0.44m	\$0	\$0.09m	\$0	\$0.01m	\$0\$	0.24m	\$0	\$0
Lights, Fixtures & Electrical	\$0.27m	\$0	\$0.02m	\$0	\$0	\$0.03m	\$0	\$0.16m\$	0.01m	\$0.05m	\$0
Park Furnishings	\$0.91m	\$0	\$0.02m	\$0.08m	\$0	\$0.06m	\$0	\$0.04m	\$0	\$0.7m	\$0
Park Shelters &	\$0.1m	\$0	\$0	\$0.01m	\$0	\$0	\$0	\$0.08m\$	0.01m	\$0	\$0

Error! Reference source not found.

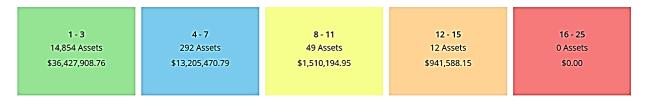
Structures											
Parklands, Paths, Trails & Parking Lots	\$3.8m	\$0	\$0.1m	\$0.15m	\$0.71m	\$0.16m	\$1.2m	\$0.05m	\$1.1m	\$0.3m	\$0.02m
Playground Equipment	\$1.8m	\$0	\$0	\$0.4m	\$0	\$0.1m	\$0	\$0	\$0	\$1.3m	\$0
Sport Fields & Courts	\$0.91m	\$0	\$0	\$0	\$0.26m	\$0	\$0.07m	\$0	\$0.17m	\$0.2m	\$0.2m
Water Features	\$0.01m	\$0	\$0	\$0	\$0	\$0	\$0.01m	\$0	\$0	\$0	\$0

Risk Management

The risk matrix provides a visual representation of the relationship between the probability of failure and the consequence of failure for the assets within land improvements, based on available inventory data.

Risk Criteria

The probability of failure was calculated using the following:


Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			80-100	1
Ctructural		-	60-79	2
Structural (80%)	Condition	100%	40-59	3
(80%)			20-39	4
			0-19	5
	Extreme Rainfall	20%	1 - 5	1 - 5
Climate	Extreme Snow	20%	1 - 5	1 - 5
Change	Freeze / Thaw	20%	1 - 5	1 - 5
(20%)	Extreme Wind	20%	1 - 5	1 - 5
	Extreme Heat	20%	1 - 5	1 - 5

The consequences of failure was calculated using the following criteria:

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			<25,000	1
Financial	Doplacement		25,000 - 150,000	2
(40%)	Replacement Cost	100%	150,000 - 500,000	3
(40%)	COSL		500,000 - 1,000,000	4
			>1,000,000	5
			Furniture, Seating, Receptacles, Trees, Planters, Garden, Irrigation	1
	Component	800/	Bike Parks, Skate Parks, Dog Parks	2
Operational	Туре	80%	Sports Fields, Courts & Surfaces	3
(40%)			Active Transportation, Fencing, Signs, Entry Features	4
			Barriers, Structures, Retaining Walls	5
	LI Asset	20%	Hard Assets	1
	Туре	20%	Green Assets	5
Service	Park		Parkettes	1
Delivery	Classification	100%	Neighbourhood Parks	3
(20%)	Classification		Community Parks	5

This is a high-level model that has been developed based on information currently available and should be reviewed and adjusted to reflect an evolving understanding of both the probability and consequences of asset failure.

Figure 18 Land Improvements Risk Matrix

The identification of critical assets allows the Town to determine risk mitigation strategies and treatment options. Risk mitigation may include asset-specific lifecycle strategies, condition assessment strategies, or simply the need to collect better asset data.

Growth Management

Trends

Drivers affecting demand include things such as population change, regulations, changes in demographics, seasonal factors, vehicle ownership rates, consumer preferences and expectations, technological changes, economic factors, agricultural practices, environmental awareness, etc.

Population and Economic Growth Forecasts

Growth of population within the Town results in a need to acquire new land improvements and park infrastructure. Between DC bylaw and developer contributed assets, the core infrastructure is expected to nearly double by 2051, with significant growth occurring between 2026 and 2040. This growth generally follows the expected population growth. Growth outlined in the DC Background study estimates increases because of growth to maintain current levels of service.

From 2023 to 2032 there is estimated to be \$60,210,655 in growth relative to land improvements based on maintaining the current levels of service.

Levels of Service

By comparing the cost, performance (average condition) and risk year-over-year, the Town will be able to evaluate how their services/assets are trending. The Town will use this data to set a target level of service and determine proposed levels for the regulation by 2025.

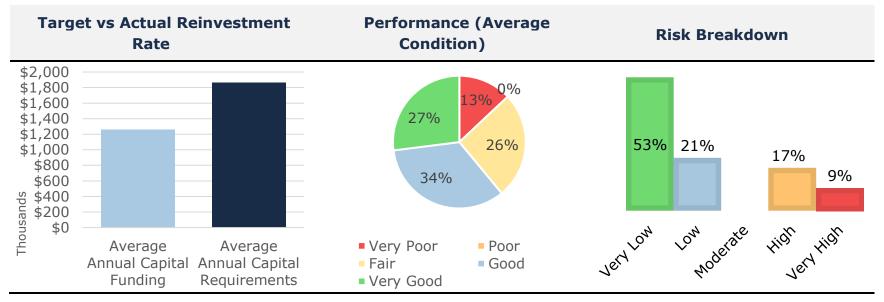


Figure 19: Land Improvements Strategic Levels of Service

Community Levels of Service

The qualitative descriptions that determine the community levels of service provided by land improvements are based on the Town providing reliable, sustainable, and affordable park services.

Technical Levels of Service

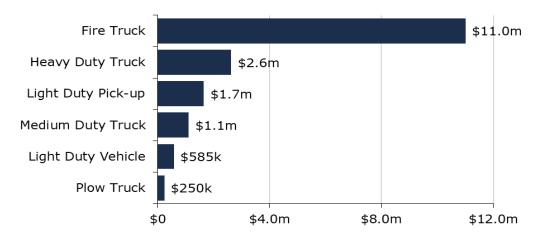
The quantitative metrics that determine the technical level of service provided by East Gwillimbury are going to be the analysis of reinvestment rates, average condition, and average asset risk levels. These can be seen by service area in Appendix A: Levels of Service.

Appendix D: Vehicles

State of the Infrastructure

Vehicles support the delivery of municipal services through the support of several service areas, including:

- Plow vehicles for winter control activities
- Recreation vehicles to provide park management
- Admin vehicles for building permit and inspection services
- Fire Trucks for emergency or protective services


The state of the infrastructure for the vehicles is summarized in the following table.

Replacement Cost	Condition	Financial Capacity		
\$17,226,080	Fair (44%)	Annual Requirement:	\$1,701,902	
		Funding Available:	\$1,050,036	
		Annual Deficit:	\$651,866	

Inventory and Valuation

The graph below displays the total replacement cost of each asset segment in the vehicle inventory.

Figure 20 Vehicle Replacement Costs

Each asset's replacement cost should be reviewed periodically to determine whether adjustments are needed to represent capital requirements more accurately.

Asset Condition

The graph below visually illustrates the average condition for each asset segment on a scale of very good to very poor.

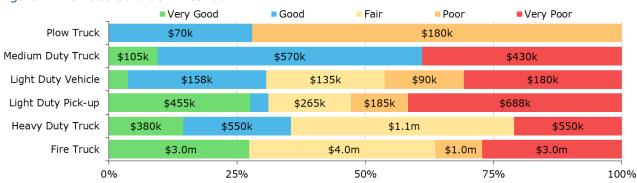


Figure 21 Vehicles Condition Breakdown

To ensure that the Towns's vehicles continue to provide an acceptable level of service, the average condition of all assets should be monitored. If the average condition declines, staff should re-evaluate their lifecycle management strategy to determine what combination of maintenance, rehabilitation and replacement activities is required to increase the overall condition of the vehicles.

Accurate and reliable condition data allows staff to determine the remaining service life of assets and identify the most cost-effective approach to managing assets. The current approach is staff complete regular visual inspections of vehicles to ensure they are in a state of adequate repair prior to operation.

Lifecycle Management

The condition or performance of assets will deteriorate over time. To ensure vehicles are performing as expected, it is important to establish a lifecycle management strategy to proactively manage asset deterioration. Lifecycle replacement model is put into a 10-year capital plan which is reviewed annually to determine the best interventions to use based on mileage, time, and manufacturer's recommendations.

Forecasted Capital Requirements

The annual capital requirement represents the average amount per year that the Town should allocate towards funding rehabilitation and replacement needs. The following graph identifies the forecasted capital requirements to the year 2051.

The forecasted requirements trend line represents the average annual capital requirements at \$1.7 million.

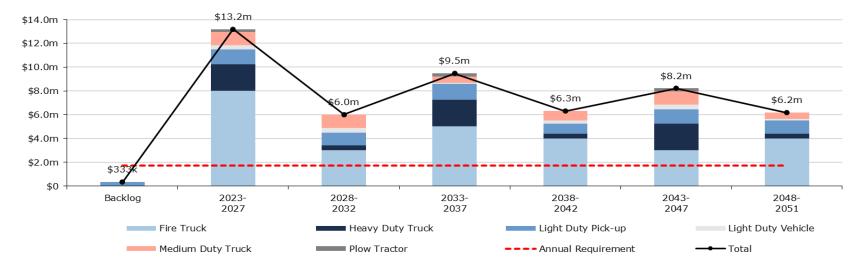


Figure 22 Vehicle Forecasted Capital Replacement Requirements to 2051

Table 9 below summarizes the projected cost of lifecycle activities (capital replacement only) that may need to be undertaken over the next 10 years to support current levels of service. These projections are generated in Citywide and rely on the data available in the asset register.

Segment	Total	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Fire Truck	\$11.0m	\$3.0m	\$1.0m	\$4.0m	\$0	\$0	\$0	\$0	\$1.0m	\$0.01m	\$2.0m
Heavy Duty Truck	\$2.6m	\$0.55m	\$0	\$1.1m	\$0.55m	\$0	\$0	\$0.38m	\$0	\$0	\$0
Light Duty Pick-up	\$2.3m	\$0.27m	\$0.54m	\$0.06m	\$0	\$0.36m	\$0.17m	\$0.33m	\$0.28m	\$0.27m	\$0.06m
Light Duty Vehicle	\$0.1 m	\$0.09m	\$0.23m	\$0.16m	\$0	\$0	\$0	\$0.1m	\$0.11m	\$0.16m	\$0.13m
Medium Duty Truck	\$2.2m	\$0.32m	\$0.12m	\$0.57m	\$0.11m	\$0	\$0	\$0	\$0.54m	\$0 :	\$0.57m
Plow Truck	\$0.25m	\$0	\$0.18m	\$0	\$0.07m	\$0	\$0	\$0	\$0	\$0	\$0

Table 9 Vehicles System-Generated	10-Year Capital Costs
-----------------------------------	-----------------------

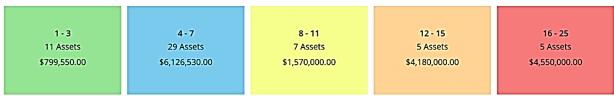
These projections can be different from actual capital forecasts. Consistent data updates, especially condition, will improve the alignment between the system-generated expenditure requirements, and the municipality's capital expenditure forecasts.

Risk Management

The risk matrix provides a visual representation of the relationship between the probability of failure and the consequence of failure for the assets within vehicles, based on available inventory data.

Risk Criteria

The probability of failure was calculated using the following:


Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
Structural (80%)		100%	80-100	1
	Condition		60-79	2
			40-59	3
			20-39	4
			0-19	5
	Extreme Rainfall	20%	1 - 5	1 - 5
Climate	Extreme Snow	20%	0% 1-5	
Change (20%)	Freeze / Thaw	20%	1 - 5	1 - 5
	Extreme Wind	20%	1 - 5	1 - 5
	Extreme Heat	20%	1 - 5	1 - 5

The consequences of failure for vehicles was calculated using the following criteria:

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score	
Financial (40%)	Replacement Cost	100%	<25,000	1	
			25,000 - 150,000	2	
			150,000 - 500,000	3	
			500,000 - 1,000,000		4
			>1,000,000	5	
Operational (40%)	Component Type	Light Duty		1	
		100%	Heavy Duty	3	
		-	Fire, Snow Removal	5	
Service Delivery (20%)	Impact on Service	100%	Light Duty Pick Up Trucks	1	
			Light Duty Vehicle		2
			Medium Duty Trucks	3	
			Heavy Duty Trucks	4	
			Fire Trucks, Plow Trucks	5	

This is a high-level model that has been developed based on information currently available and should be reviewed and adjusted to reflect an evolving understanding of both the probability and consequences of asset failure.

The identification of critical assets allows the Town to determine risk mitigation strategies and treatment options. Risk mitigation may include asset-specific lifecycle strategies, condition assessment strategies, or simply the need to collect better asset data.

Growth Management

Trends

Drivers affecting demand include things such as population change, regulations, changes in demographics, seasonal factors, vehicle ownership rates, consumer preferences and expectations, technological changes, economic factors, agricultural practices, environmental awareness, etc.

Population and Economic Growth Forecasts

Growth of population within the Town results in a need to acquire new vehicles. Between DC bylaw and developer contributed assets, the core infrastructure is expected to nearly double by 2051, with significant growth occurring between 2026 and 2040. This growth generally follows the expected population growth. Growth outlined in the DC Background study estimates increases because of growth to maintain current levels of service.

From 2023 to 2032 there is estimated to be \$9,170,000 in growth relative to vehicles based on maintaining the current levels of service.

Levels of Service

By comparing the cost, performance (average condition) and risk year-over-year, the Town will be able to evaluate how their services/assets are trending. The Town will use this data to set a target level of service and determine proposed levels for the regulation by 2025.

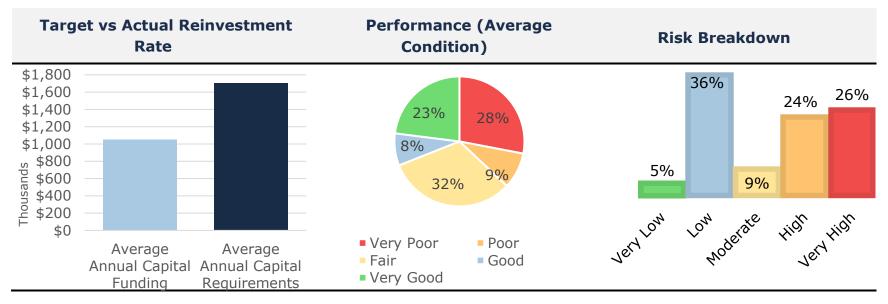


Figure 24: Vehicles Strategic Levels of Service

Community Levels of Service

The qualitative descriptions that determine the community levels of service provided by vehicles are through ensuring that they are reliable, sustainable, and affordable to meet the needs of the community.

Technical Levels of Service

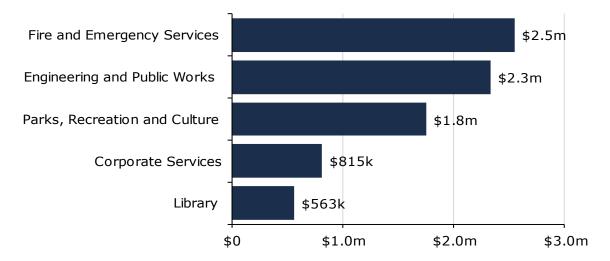
The quantitative metrics that determine the technical level of service provided by East Gwillimbury are going to be the analysis of reinvestment rates, average condition, and average asset risk levels. These can be seen by service area in Appendix A: Levels of Service.

Appendix E: Machinery and Equipment

State of the Infrastructure

To maintain the quality stewardship of East Gwillimbury's infrastructure and support the delivery of services, municipal staff own and employ various types of equipment. This includes:

- Computers, furniture and phone systems to support all municipal services
- Engineering and Public Works equipment to support roadway maintenance
- Fire equipment to support emergency services
- Library, Parks and Recreation equipment to support recreation programs


Replacement Cost	Condition	Financial Capacity			
\$8,005,278	Fair (58%)	Annual Requirement:	\$937,030		
		Funding Available:	\$279,498		
		Annual Deficit:	\$657,532		

The state of the infrastructure for equipment is summarized in the following table.

Inventory and Valuation

The graph below displays the total replacement cost of each asset segment in the Town's machinery and equipment inventory.

Figure 25 Machinery and Equipment Replacement Costs

Each asset's replacement cost should be reviewed periodically to determine whether adjustments are needed to more accurate represent capital requirements.

Asset Condition

The graph below visually illustrates the average condition for each asset segment on a very good to very poor scale.

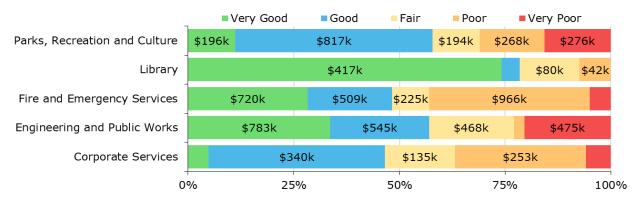


Figure 26 Machinery and Equipment Condition Breakdown

To ensure that the Towns's machinery and equipment continues to provide an acceptable level of service, East Gwillimbury should continue to monitor the average condition. If the average condition declines, staff should re-evaluate their lifecycle management strategy to determine what combination of maintenance, rehabilitation and replacement activities is required to increase the overall condition.

Accurate and reliable condition data allows staff to determine the remaining service life of assets and identify the most cost-effective approach to managing assets. The current approach is varied because of the broad range of types of equipment included in this category.

Lifecycle Management

The condition or performance of most assets will deteriorate over time. To ensure that municipal assets are performing as expected and meet the needs of customers, it is important to establish a lifecycle management strategy to proactively manage asset deterioration. Machinery and equipment have identified lifecycles and through use and staff recommendations is replaced on the schedule developed. Maintenance is performed based on manufacturer's recommendations for equipment with regulatory requirements, for example fire equipment.

Forecasted Capital Requirements

The following graph identifies the forecasted capital requirements to the year 2051. The forecasted requirements trend line represents the average annual capital requirements at \$919 thousand.

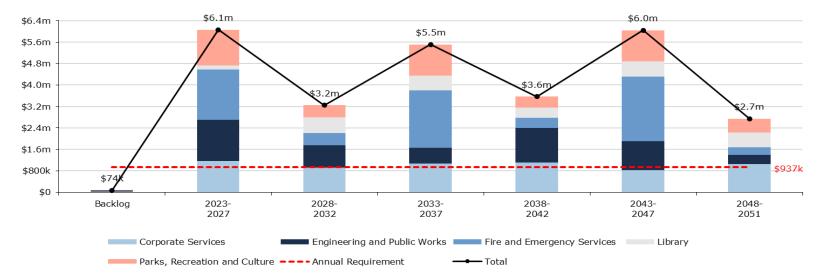


Figure 27 Machinery and Equipment Forecasted Capital Replacement Requirements to 2051

Table 10 below summarizes the projected cost of lifecycle activities (capital replacement only) that may need to be undertaken over the next 10 years to support current levels of service. These projections are generated in Citywide and rely on the data available in the asset register.

Table 10 Machinery and Equipment System-Generated 10-Year Capital Costs

Segment	Total	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Corporate Services	\$2.1m	\$0.03m	\$0.49m	\$0.23m	\$0.03m	\$0.38m	\$0.08m	\$0.08m	\$0.45m	\$0.11m	\$0.2m
Engineering and Public Works	5 \$2.4m	\$0.44m	\$0.07m	\$0.46m	\$0.1m	\$0.47m	\$0.19m	\$0.09m	\$0.03m	\$0m	\$0.52m
Fire and Emergency Services	\$2.3m	\$0.11m	\$1.0m	\$0.24m	\$0.17m	\$0.34m	\$0.07m	\$0.12m	\$0.09m	\$0.18m	\$0.01m
Library	\$0.73m	\$0	\$0.12m	\$0.03m	\$0	\$0.01m	\$0.2m	\$0.19m	\$0.13m	\$0.01m	\$0.02m

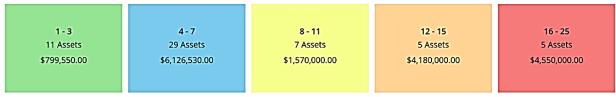
These projections can be different from actual capital forecasts. Consistent data updates, especially condition, will improve the alignment between the system-generated expenditure requirements, and the Town's capital expenditure forecasts.

Risk Management

The risk matrix provides a visual representation of the relationship between the probability of failure and the consequence of failure for the assets within machinery and equipment, based on available inventory data.

Risk Criteria

The probability of failure was calculated using the following:


Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			80-100	1
Structural			60-79	2
(80%)	Condition	100%	40-59	3
(80%)			20-39	4
			0-19	5
	Extreme Rainfall	20%	1 - 5	1 - 5
Climate	Extreme Snow	20%	1 - 5	1 - 5
Change	Freeze / Thaw	20%	1 - 5	1 - 5
(20%)	Extreme Wind	20%	1 - 5	1 - 5
	Extreme Heat	20%	1 - 5	1 - 5

The consequences of failure for machinery and equipment was calculated using the following criteria:

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score					
			<25,000	1					
Financial	Doplacement		25,000 - 150,000	2					
(40%)	Replacement Cost	100%	150,000 - 500,000	3					
(4070)	COSC		500,000 - 1,000,000	4					
			>1,000,000	5					
			Other Equipment	1					
	Equipment Type	50%	Motorized Equipment	3					
Operational			Emergency Equipment (Fire,						
(40%)		Type	Type					Snow Removal, Personal	5
(4070)			Protection)						
	Redundancy	50%	Redundancy	1					
	Redundancy	5070	No Redundancy	2					
			Light Duty Pick Up Trucks	1					
Service			Light Duty Vehicle	2					
Delivery	Impact on	100%	Medium Duty Trucks	3					
(20%)	Service	20070	Heavy Duty Trucks	4					
			Fire Trucks, Plow Trucks	5					

This is a high-level model that has been developed based on information currently available and should be reviewed and adjusted to reflect an evolving understanding of both the probability and consequences of asset failure.

The identification of critical assets allows the Town to determine risk mitigation strategies and treatment options. Risk mitigation may include asset-specific lifecycle strategies, condition assessment strategies, or simply the need to collect better asset data.

Growth Management

Trends

Drivers affecting demand include things such as population change, regulations, changes in demographics, seasonal factors, vehicle ownership rates, consumer preferences and expectations, technological changes, economic factors, agricultural practices, environmental awareness, etc.

Population and Economic Growth Forecasts

Growth of population within the Town results in a need to acquire new machinery and equipment. Between DC bylaw and developer contributed assets, the core infrastructure is expected to nearly double by 2051, with significant growth occurring between 2026 and 2040. This growth generally follows the expected population growth. Growth outlined in the DC Background study estimates increases because of growth to maintain current levels of service.

From 2023 to 2032 there is estimated to be \$3,412,400 in growth relative to machinery and equipment based on maintaining the current levels of service.

Levels of Service

By comparing the cost, performance (average condition) and risk year-over-year, East Gwillimbury will be able to evaluate how their services/assets are trending. The Town will use this data to set a target level of service and determine proposed levels for the regulation by 2025.

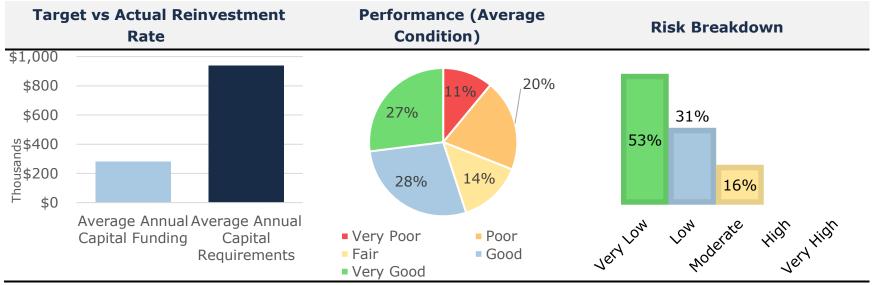


Figure 29: Machinery and Equipment Strategic Levels of Service

Community Levels of Service

The qualitative descriptions that determine the community levels of service provided by machinery and equipment are by ensuring that they are reliable, sustainable, and affordable to meet the needs of staff and the community.

Technical Levels of Service

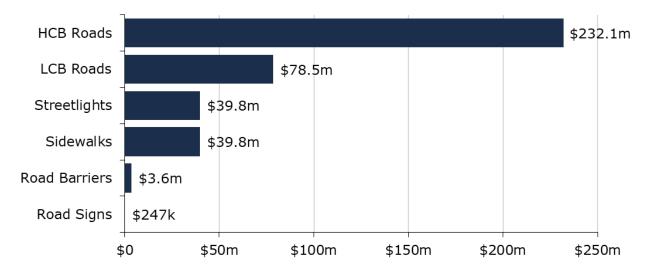
The quantitative metrics that determine the technical level of service provided by East Gwillimbury are going to be the analysis of reinvestment rates, average condition, and average asset risk levels. These can be seen by service area in Appendix A: Levels of Service.

Appendix F: Road Network

State of the Infrastructure

East Gwillimbury's road network comprises the third largest share of its infrastructure portfolio, with a current replacement cost of \$394 million, distributed primarily between asphalt roads and surface treated roads.

The Town also owns and manages other supporting infrastructure and capital assets, including sidewalks, road signs, road barriers and streetlights.


The state of the infrastructure for the road network is summarized below.

Replacement Cost	Condition	Financial Capacity	
\$394,041,807	Good (71%)	Annual Requirement:	\$4,652,626
		Funding Available:	\$2,704,365
		Annual Deficit:	\$1,948,261

Inventory and Valuation

The figure below displays the replacement cost of each asset segment in the Town's road inventory.

Figure 30 Road Network Replacement Value

Each asset's replacement cost should be reviewed periodically to determine whether adjustments are needed to more accurate represent realistic capital requirements.

Asset Condition

The graph below visually illustrates the average condition for each asset segment on a very good to very poor scale.

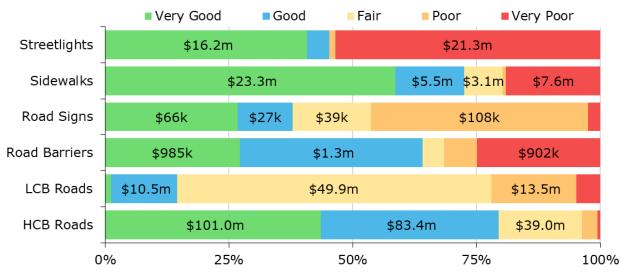


Figure 31 Road Network Condition Breakdown

To ensure that East Gwillimbury's roads continue to provide an acceptable level of service, the municipality should monitor the average condition of all assets. If the average condition declines, staff should re-evaluate their lifecycle management strategy to determine what combination of maintenance, rehabilitation, and replacement activities is required to increase the overall condition of the roads.

Each asset's estimated useful life should also be reviewed periodically to determine whether adjustments need to be made to better align with the observed length of service life for each asset type.

Accurate and reliable condition data allows staff to determine the remaining service life of assets and identify the most cost-effective approach to managing assets. The Town's current approach is described below.

The condition of roads is collected every two years by an external consultant, utilizing a detailed visual inspection of the entire network. A pavement condition index (PCI) and surface distress index (SDI) are calculated from observed defects, geometry and drainage, and rideability.

Streetlights, barriers, sidewalks, signs, and signals are assessed through a combination of age-based conditions, where the useful life and age is used to estimate deterioration, inspection records where defects are noted, and engineering studies. Road network assets are being inspected regularly, in compliance with industry standards and regulatory requirements.

Lifecycle Management

Infrastructure assets provide the Town value by enabling the delivery of key services. Over time these assets will deteriorate, which will lower the service they provide. The road network is organized into functional classes and maintenance classes, which determine the level of maintenance they require, the type of traffic they can accommodate, speed limit, and volume of traffic.

Asphalt and surface treated roads are triggered for rehabilitation and replacement via the decision trees developed by Stantec's PMS. Results were obtained by running the model over a 50-year period with an unconstrained budget and optimized for cost effectiveness. This scenario best accounts for the current levels of service, as it determines the rehabilitation program for lifecycle needs at the lowest cost option.

The renewal and replacement strategy for asphalt roads uses a combination of pavement preservation techniques, thin asphalt milling and resurfacing, full asphalt milling and resurfacing and reconstruction. Surface treated roads are generally resurfaced on a regular cycle when the pavement condition index drops below 55. Specific triggers for these activities are dependent on numerous factors, including pavement condition index, surface distress index, roadside class, and material.

Forecasted Capital Requirements

Figure 32 illustrates the forecasted infrastructure rehabilitation and replacement requirements for the Town's road network to 2051.

East Gwillimbury's average forecasted annual requirements (red dotted line) total \$4.7 million for all assets in the road network. Although actual spending may fluctuate substantially from year to year, this figure is a useful benchmark value for annual capital expenditure targets (or allocations to reserves) to ensure projects are not deferred and replacement needs are met as they arise.

Table 11 below summarizes the projected cost of lifecycle activities (rehabilitation and replacement) that may need to be undertaken over the next 10 years to support current levels of service. These projections are generated in Citywide and rely on the data available in the asset register.

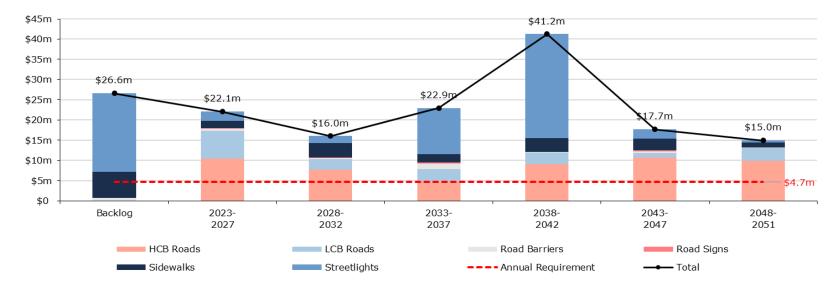


Figure 32 Road Network Forecasted Capital Replacement Requirements to 2051

These projections can be different from actual capital forecasts. Consistent data updates, especially condition, will improve the alignment between the system-generated expenditure requirements, and the Town's capital expenditure forecasts.

Segment	Total	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
HCB Roads	\$18.2m	\$2.2m	\$1.7m	\$3.6m	\$2.2m	\$0.84m	\$1.3m	\$2.3m	\$1.0m	\$1.2m	\$1.9m
LCB Roads	\$9.4m	\$1.7m	\$0.37m	\$1.3m	\$1.6m	\$2.0m	\$0.44m	\$0.97m	\$0.46m	\$0.19m	\$0.46m
Road Barriers	\$0.87m	\$0.21m	\$0.24m	\$0	\$0	\$0.09m	\$0.07m	\$0.11m	\$0.1m	\$0.05m	\$0
Road Signs	\$0.25m	\$0.01m	\$0.14m	\$0.01m	\$0.01m	\$0.02m	\$0.06m	\$0	\$0.01m	\$0	\$0.01m
Sidewalks	\$5.3m	\$1.2m	\$0.2m	\$0.04m	\$0.03m	\$0.3m	\$0.63m	\$0.04m	\$0.56m	\$1.6m	\$0.73m
Streetlights	\$4.1m	\$1.8m	\$0.49m	\$0	\$0	\$0	\$1.3m	\$0.42m	\$0.06m	\$0	\$0

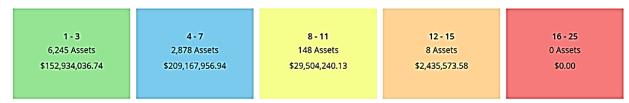
Table 11 Road Network System-generated 10-Year Capital Costs

Risk Management

The risk matrix provides a visual representation of the relationship between the probability of failure and the consequence of failure for the assets within the road network, based on available inventory data.

Risk Criteria

The probability of failure was calculated using the following:


Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			80-100	1
			60-79	2
Structural (80%)	Condition	100%	40-59	3
			20-39	4
			0-19	5
	Extreme Rainfall	20%	1 - 5	1 - 5
	Extreme Snow	20%	1 - 5	1 - 5
Climate Change –	Freeze / Thaw	20%	1 - 5	1 - 5
(20%) —	Extreme Wind	20%	1 - 5	1 - 5
	Extreme Heat	20%	1 - 5	1 - 5

The consequences of failure for Road network were calculated using the following criteria:

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			Gravel	2
	Asset Segment 2024 AMP	60%	LCB	3
			НСВ	4
			R	1
Einancial (400/)	ENV_RS	20%	S	3
Financial (40%)			U	4
	Drainage	1.00/	OD	1
	Drainage	10%	SS	4
	Adjacent to Bridge	1.00/	No	1
	Adjacent to Bridge	10%	Yes	5
			6	1
	CLASS_MMS	Weighting 024 AMP 60% 20%	5	2
			4	3
Operational			3	4
(40%)			1, 2	5
(4070)			600, 500, LNWY	1
	CLASS RS	50%	L/R	2
	CLASS_KS	50 /0	LCI, C/R	3
			CCI	4
			Normal	1
Service Delivery	Road Lise (Risk)	100%	Transit Route	3
(20%)	Nodu OSE (NISK)	100 /0	Bridge Adjacent, Trucking Route	4
	ENV_RS 20% Drainage 10% Adjacent to Bridge 10% CLASS_MMS 50% CLASS_RS 50%	Downtown	5	

This is a high-level model that has been developed based on information currently available and should be reviewed and adjusted to reflect an evolving understanding of both the probability and consequences of asset failure.

Figure 33 Road Network Risk Matrix

The identification of critical assets allows the Town to determine risk mitigation strategies and treatment options. Risk mitigation may include asset-specific lifecycle strategies, condition assessment strategies, or simply the need to collect better asset data.

Growth Management

Trends

Drivers affecting demand include things such as population change, regulations, changes in demographics, seasonal factors, vehicle ownership rates, consumer preferences and expectations, technological changes, economic factors, agricultural practices, environmental awareness, etc.

Population and Economic Growth Forecasts

Growth of population within the Town results in a need to acquire new road network infrastructure. Between DC bylaw and developer contributed assets, the core infrastructure is expected to nearly double by 2051, with significant growth occurring between 2026 and 2040. This growth generally follows the expected population growth. Growth outlined in the DC Background study estimates increases because of growth to maintain current levels of service.

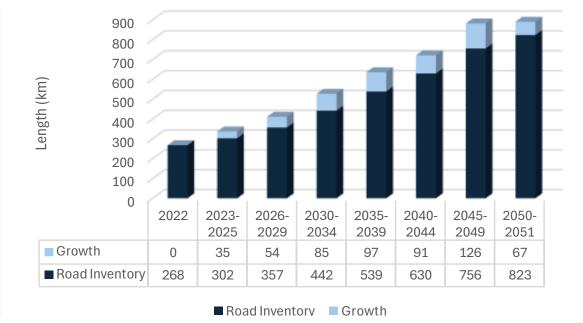


Figure 34: Road Network Growth Estimate

Levels of Service

By comparing the cost, performance (average condition) and risk year-over-year, East Gwillimbury will be able to evaluate how their services/assets are trending. The Town will use this data to set a target level of service and determine proposed levels for the regulation by 2025.

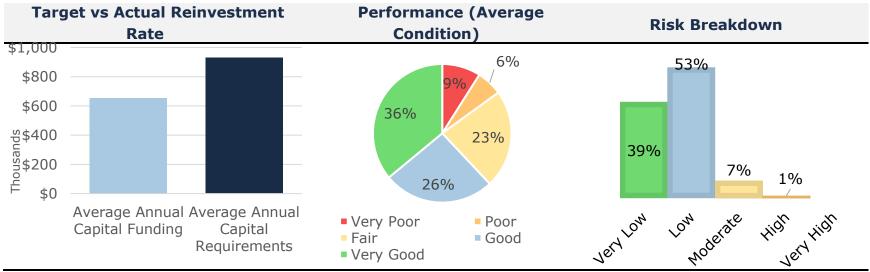


Figure 35: Road Network Strategic Levels of Service

The tables that follow summarize East Gwillimbury's current levels of service with respect to prescribed KPIs under Ontario Regulation 588/17.

Community Levels of Service

The following table outlines the qualitative descriptions that determine the community levels of service provided by the road network.

Error! Reference source not found.

Table 12 Ontai	TO REGULATION 500/17 ROAD NELWORK COMMUNITY LEVELS OF SERVICE	
Service Attribute	Qualitative Description	Current LOS
Scope	Description, which may include maps, of the road network in the municipality and its level of connectivity	See Figure 36: Road Network by Class
Quality	Description or images that illustrate the different levels of road class pavement condition	See Figure 37: Images of Pavement Condition for the description of road condition

Table 12 Ontario Regulation 588/17 Road Network Community Levels of Service


Technical Levels of Service

The following table outlines the quantitative metrics that determine the technical level of service provided by the road network.

Table 13 Ontario	Pequilation	588/17	Poad	Notwork	Technical	Levels of	Service
Table 15 Onland	Regulation	500/17	кuau	NELWOIK	recinicai	Leveis UI	SEIVICE

Service Attribute	Technical Metric	Current LOS
Scope	Lane-km of arterial roads (MMS classes 1 and 2) per land area (km/km ²)	0
	Lane-km of collector roads (MMS classes 3 and 4) per land area (km/km ²)	0.472
	Lane-km of local roads (MMS classes 5 and 6) per land area (km/km ²)	1.488
Quality	Average pavement condition index for paved roads	77.5 (Good)
	Average surface condition for unpaved roads (e.g. excellent, good, fair, poor)	N/A

Figure 36: Road Network by Class

Figure 37: Images of Pavement Condition

Very Good

Good

Fair

Poor

Error! Reference source not found.

Very Poor

Appendix G: Bridges and Culverts

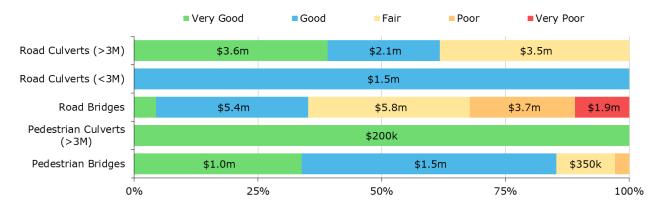
State of the Infrastructure


Bridges and culverts (B&C) represent the combination of road and pedestrian bridges and culverts greater than 3m as well as less than 3m. The state of the infrastructure for bridges and culverts is summarized in the following table.

Replacement Cost	Condition	Financial Capacity	
\$31,435,909	Good (70%)	Annual Requirement:	\$893,078
		Funding Available:	\$235,162
		Annual Deficit:	\$657,916

Inventory and Valuation

Figure 38 below displays the replacement cost of each asset segment in the Town's bridges and culverts inventory.


Figure 38 Bridges & Culverts Replacement Cost

Each asset's replacement cost should be reviewed periodically to determine whether adjustments are needed. This can be included in the Ontario Structures Inspection Manual (OSIM) inspections as the replacement cost is part of the calculation for the bridge condition index (BCI).

Asset Condition

To ensure that the Town's bridges and culverts continue to provide an acceptable level of service, the staff should monitor the average condition of all assets. Accurate and reliable condition data allows staff to determine the remaining service life of assets and identify the most cost-effective approach to managing assets. The condition of bridges and structural culverts is established via biennial inspections, which produce a bridge condition index (BCI) score for each structure, as well as detailed condition information on each structure element.

Figure 39 B&C Condition Breakdown

Bridges and structural culvert deficiencies are documented in detail as part of the biennial OSIM inspection process. Loading and dimensional restrictions and criticality of deficiencies are identified for each structure. The condition scale for bridges and culverts utilized is from 0 to 100 from Very Poor to Very Good.

Table 14: Bridges and Culvert Condition Scale

Condition Category	BCI Range	Description
Very Good	80 - 100	Bridges/culverts in very good condition do not require any corrective maintenance or rehabilitation. Structures are fully operational.
Good	70 - 80	Bridges good condition may require some corrective maintenance. Bridges/culverts are fully operational.
Fair	50 - 70	Bridges in fair condition would have some deficiencies and may require minor to major rehabilitation. These bridges are typically fully operational, but in some cases can have restrictions placed.
Poor	35 - 50	Bridges in poor condition require major rehabilitation or replacement. These bridges may have load or dimensionality restrictions placed on them. In some cases, these structures could be closed.
Very Poor	0 - 35	Bridges in very poor condition require major rehabilitation or replacement. These bridges likely have load or dimensionality restrictions placed on them. In many cases, these structures could be closed.

Lifecycle Management Strategy

The condition or performance of most assets will deteriorate over time. To ensure that municipal assets are performing as expected and meeting the needs of customers, it is important to establish a lifecycle management strategy to proactively manage asset deterioration.

Bridge and culvert renewals are scheduled as per the cost estimates and timelines recommended by the latest OSIM inspection report for road and pedestrian bridges and culverts.

Forecasted Capital Requirements

Figure 40 illustrates the forecasted infrastructure rehabilitation and replacement requirements for the Towns's bridges and culverts to the year 2051. These projections are based on asset replacement costs, age analysis, and condition data.

East Gwillimbury's forecasted average annual requirements to 2051(red dotted line) for bridges and culverts total \$893 thousand. Although actual spending may fluctuate substantially from year to year, this figure is a useful benchmark value for annual capital expenditure targets (or allocations to reserves) to ensure projects are not deferred and replacement needs are met as they arise.

OSIM condition assessments and a robust risk framework will ensure that highcriticality assets receive proper and timely lifecycle intervention, including rehabilitation and replacement activities.

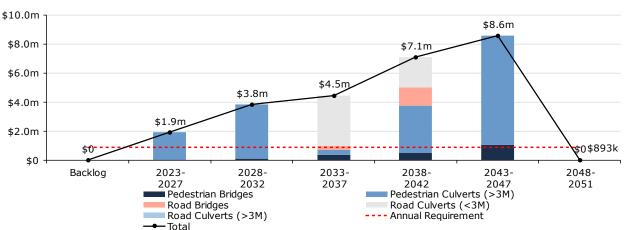


Figure 40 B&C Forecasted Capital Replacement Requirements to 2051

Table 15 below summarizes the projected cost of lifecycle activities (as previously described) that may need to be undertaken over the next 10 years to support current levels of service.

Segment	Total	2023	2024	2025	2026	2027	202	28	2029	2030	2031	2032
Pedestrian Bridges	\$0.08 m	\$0	\$0	\$0	\$0		\$0 \$0.)8m	\$0	\$0	\$0	\$0
Pedestrian Culverts (>3M)	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0	\$0	\$0
Road Bridges	\$5.7m	\$0	\$0	\$1.6m	\$0.33m		\$0	\$0	\$0	\$0	\$2.2m	\$1.5m
Road Culverts (<3M)	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0	\$0	\$0
Road Culverts (>3M)	\$0	\$0	\$0	\$0	\$0		\$0	\$0	\$0	\$0	\$0	\$0

Table 15 B&C System-generated 10-Year Capital Costs

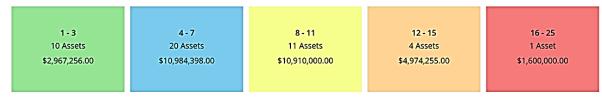
These projections are generated in Citywide and rely on the data available in the asset register. Assessed condition data and replacement costs were used to assist in forecasting replacement needs for bridges and structural culverts.

Risk Management

The risk matrix provides a visual representation of the relationship between the probability of failure and the consequence of failure for the assets within the bridges and culvert category, based on available inventory data.

Risk Criteria

The probability of failure was calculated using the following:


Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			80-100	1
			60-79	2
Structural (80%)	Condition	100%	40-59	3
			20-39	4
			0-19	5
	Extreme Rainfall	20%	1 - 5	1 - 5
Climata Changa	Extreme Snow	20%	1 - 5	1 - 5
Climate Change –	Freeze / Thaw	20%	1 - 5	1 - 5
(20%) – –	Extreme Wind	20%	1 - 5	1 - 5
	Extreme Heat	20%	1 - 5	1 - 5

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			<25,000	1
			25,000 - 150,000	2
	Replacement Cost	60%	150,000 - 500,000	3
			500,000 - 1,000,000	4
Financial (40%)			>1,000,000	5
			R	1
	ENV_RS	20%	S	3
			U	4
	Drainage	20% —	OD	1
	Dialitage	20%	SS	4
			1 - 199	1
			200 - 399	2
	AADT (Risk)	50%	400 - 999	3
			1000 - 1999	4
Operational			2000+	5
(40%)			Unopened road allowance	1
	Roadsido Dosign Class		Rural, Local	2
	Roadside Design Class (Risk)	50%	collector	3
	(RISK)		arterial	4
			highway	5
			Open Space, Agriculture	1
			Residential	2
	Land Use (Risk)	20%	business	3
			Industrial, Institutional	4
Service Delivery			Critical Land Use	5
(20%)			<5km	1
			5 - 10 km	2
	Detour Length (Risk)	80%	>= 10 km	3
			Only 1 alternate route	4
			No possible alternate route	5

The consequences of failure for bridges and culverts was calculated using the following criteria:

This is a high-level model that has been developed based on information currently available and should be reviewed and adjusted to reflect an evolving understanding of both the probability and consequences of asset failure.

The identification of high-risk assets allows the Town to determine risk mitigation strategies and treatment options. Risk mitigation may include asset-specific lifecycle strategies, condition assessment strategies, or simply the need to collect better asset data.

Growth Management

Trends

Drivers affecting demand include things such as population change, regulations, changes in demographics, seasonal factors, vehicle ownership rates, consumer preferences and expectations, technological changes, economic factors, agricultural practices, environmental awareness, etc.

Population and Economic Growth Forecasts

Growth of population within the Town results in a need to acquire new bridges and culvert infrastructure. Between DC bylaw and developer contributed assets, the core infrastructure is expected to nearly double by 2051, with significant growth occurring between 2026 and 2040. This growth generally follows the expected population growth. Growth outlined in the DC Background study estimates increases because of growth to maintain current levels of service.

Levels of Service

The following graphs identify the Town's metrics to identify their current level of service for bridges and culverts. By comparing the cost, performance (average condition) and risk year-over-year East Gwillimbury will be able to evaluate how their services/assets are trending. The Town will use this data to set a target level of service and determine proposed levels for the regulation by 2025.

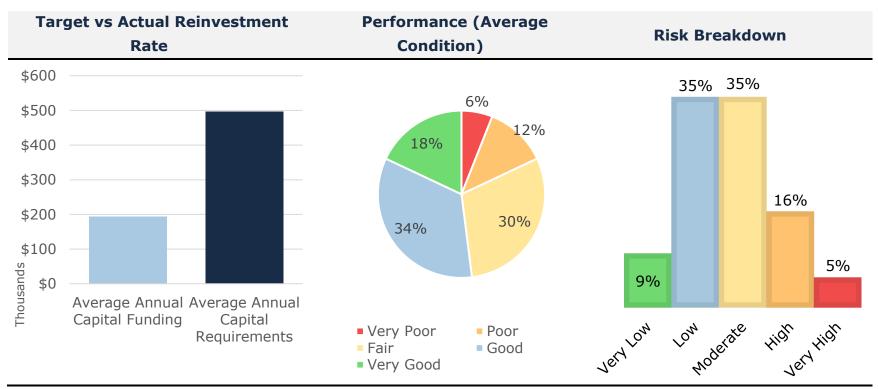


Figure 42: B&C Strategic Levels of Service

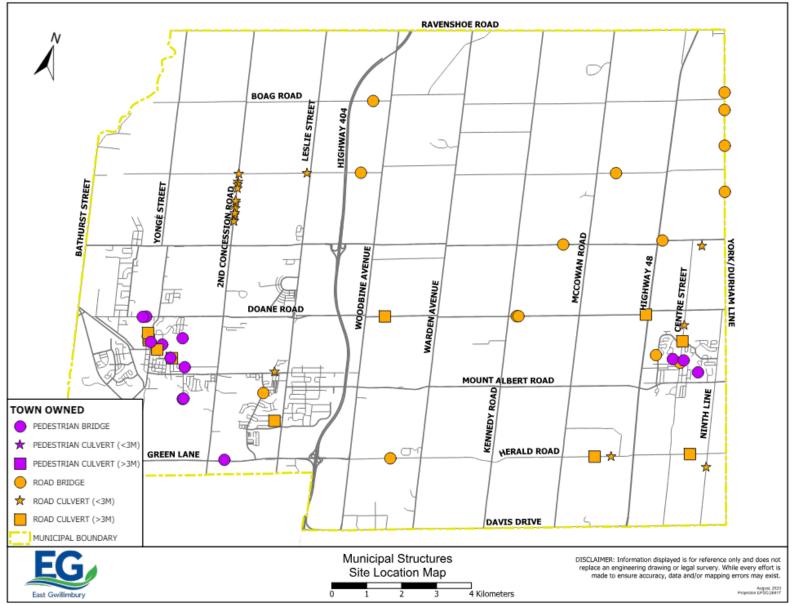
The metrics included below are the technical and community level of service metrics that are required as part of O. Reg. 588/17.

Community Levels of Service

The following table outlines the qualitative descriptions that determine the community levels of service provided by bridges and culverts.

Table 16 Ontario Regulation 588/17 B&C Community Levels of Service

Service Attribute	Qualitative Description	Current LOS
Scope	Description of the traffic that is supported by municipal bridges (e.g. heavy transport vehicles, motor vehicles, emergency vehicles, pedestrians, cyclists)	The Town's bridges support a range of traffic types, including heavy and light vehicles, pedestrians and cyclists. They are used as part of major transportation routes that accommodate all types of travel including emergency response, transportation of goods/services, and personal travel. See Figure 43: Bridges and Culverts Site Location Map
Quality	Description or images of the condition of bridges and how this would affect use of the bridges	See Figure 44: Images of Bridge and Culvert Condition
	Description or images of the condition of culverts and how this would affect use of the culverts	See Figure 44: Images of Bridge and Culvert Condition


Technical Levels of Service

The following table outlines the quantitative metrics that determine the technical level of service provided by bridges and culverts.

Table 17 Ontario Regulation 588/17 B&C Technical Levels of Service

Service Attribute	Technical Metric	Current LOS
Scope	% of bridges in the municipality with loading or dimensional restrictions	17%
Quality	Average bridge condition index value for bridges	68.8
	Average bridge condition index value for structural culverts	70.9

Figure 44: Images of Bridge and Culvert Condition **Very Good -** Oriole Drive Pedestrian Bridge

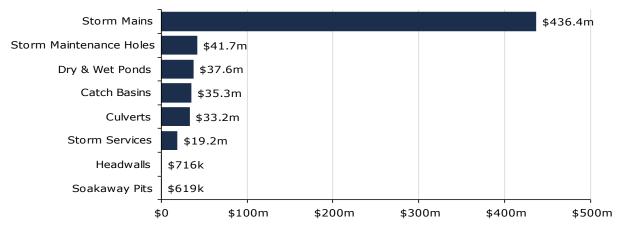
Good - Herald Road Culvert

Fair - Pony Hill Bridge

Poor - Marles Bridge

Appendix H: Stormwater Network

State of the Infrastructure


East Gwillimbury's stormwater network is the largest category of all the municipal infrastructure. The state of the infrastructure for the stormwater network is summarized in the following table.

Replacement Cost	Condition	Financial Cap	acity
\$604,643,080	Very Good	Annual Requirement:	\$8,551,719
(84%)		Funding Available:	\$0
		Annual Deficit:	\$8,551,719

Asset Inventory and Valuation

The graph below displays the replacement cost of each asset segment in the Town's stormwater network inventory.



Storm services include foundation drain collector (FDC) sewer service and storm service.

Asset Condition

The graph below visually illustrates the average condition for each asset segment on a very good to very poor scale. To ensure that the Towns's stormwater network continues to provide an acceptable level of service, the Town should monitor the average condition of all assets. If the average condition declines, staff should reevaluate their lifecycle management strategy to determine the combination of activities required to increase the overall condition of the stormwater network.

Figure 46 Stormwater Network Condition Breakdown

Accurate and reliable condition data allows staff to determine the remaining service life of assets and identify the most cost-effective approach to managing assets. Results from culvert inspections have been transformed to a 1 - 5 condition rating scale. Stormwater mains are assessed for defects, and a condition score can be developed if a rating criterion is determined. There is no industry standard for converting asset condition to the 5-tier condition rating of very good to very poor, so staff should develop an internal methodology to adopt.

Some storm ponds have been assessed for sediment loads, in which case assessed ponds have a condition score equal to the % sediment fill. Storm ponds and other assets that have not been assessed rely on age-based conditions.

Age-based condition is calculated by prorating the age of the asset over its useful life. These condition ratings are transformed to a 0 - 100 condition rating scale, spread across five condition increments: very poor, poor, fair, good, very good.

Lifecycle Management

To ensure that municipal assets are performing as expected and meeting the needs of customers, it is important to establish a lifecycle management strategy to proactively manage asset deterioration.

Historically, the Town has inspected 10% of the piped storm sewer network per year using a closed-circuit television (CCTV). This work includes the gravity mains and manholes, but not the laterals. In addition to the network-wide inspection, sewer mains are inspected prior to capital work, and those that are contributing to inflow and infiltration are inspected. Approximately 30% of catch basins and oil grit separators are inspected and cleaned each year. Culverts are inspected annually for blockages and other defects.

Forecasted Capital Requirements

Figure 47 illustrates the forecasted infrastructure replacement requirements for the Town's stormwater infrastructure to the year 2051. East Gwillimbury's forecasted average annual requirements (red dotted line) total \$8.6 million for all stormwater network assets. Although actual spending may fluctuate substantially from year to year, this figure is a useful benchmark value for annual capital expenditure targets (or allocations to reserves) to ensure projects are not deferred and replacement needs are met as they arise. These projections and estimates are based on asset replacement costs and age analysis.

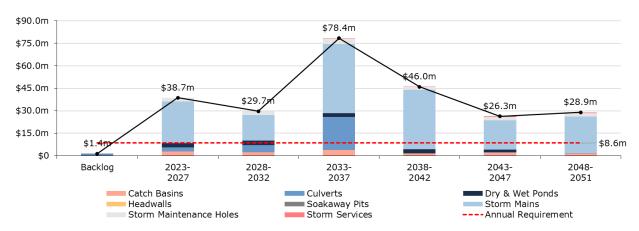


Figure 47 Stormwater Network Forecasted Capital Replacement Requirements to 2051

It is unlikely that all mains will need to be replaced as forecasted. Coordinated projects, along with camera inspection data, will help drive replacements and rehabilitations.

The table below summarizes the projected cost of lifecycle activities (capital replacement only) that will need to be undertaken over the next 10 years to support current levels of service. These projections are generated in Citywide and rely on the data available in the asset register, which was limited to asset age, replacement cost, and useful life.

Segment	Total	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Catch Basins	\$5.1m	\$259k	\$1.1m	\$0.21mk	\$0.85m	\$0.38m	\$0.99m	\$0.05m	\$0.31m	\$0.34m	\$0.58m
Culverts	\$7.8m	\$136k	\$17k	\$1.1m	\$0.04m	\$1.5m	\$0.31m	\$2.0m	\$1.3m	\$0.06m	\$1.3m
Dry & Wet Ponds	\$5.5m	\$111k	\$1.3m	\$0.26m	\$0.93m	\$0	\$1.4m	\$0.27m	\$308k	\$0.53m	\$0.43m
Headwalls	\$0.08m	\$6k	\$3k	\$0	\$0.02m	\$0.01m	\$0.01m	\$0.01m	\$3k	\$0	\$0.02m
Soakaway Pits	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Storm Mains	\$44.8m	\$0	\$2.2m	\$11.0m	\$0.07m	\$14.5m	\$1.6m	\$7.8m	\$2.2m	\$4.2m	\$1.2m
Storm Maintenance Holes	\$5.1m	\$0.15m	\$0.88m	\$0.03m	\$0.95m	\$0.55m	\$0.21m	\$0.19m	\$0.78m	\$0.73m	\$0.62m

Table 18 Stormwater Network System-Generated 10-Year Capital Costs

Consistent data updates, especially condition, will improve the alignment between the system-generated expenditure requirements, and the Town's capital expenditure forecasts.

Risk Management

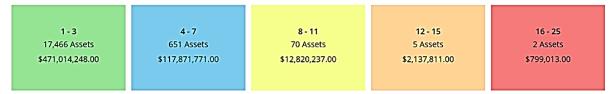
The risk matrix provides a visual representation of the relationship between the probability of failure and the consequence of failure for the assets within the stormwater network category, based on available inventory data.

Risk Criteria

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			80-100	1
Structural			60-79	2
(80%)	Condition	100%	40-59	3
(80%)			20-39	4
		_	0-19	5
	Extreme Rainfall	20%	1 - 5	1 - 5
Climate	Extreme Snow	20%	1 - 5	1 - 5
Change	Freeze / Thaw	20%	1 - 5	1 - 5
(20%)	Extreme Wind	20%	1 - 5	1 - 5
	Extreme Heat	20%	1 - 5	1 - 5

The probability of failure was calculated using the following:

The consequences of failure for storm mains and services was calculated using the following criteria:


Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			0-200	1
Financial			201-399	2
Financial (40%)	Size (mm)	100%	400-599	3
(4070)			600-999	4
			1,000+	5
			non-sensitive area	1
	Proximity to ESA or Public		within 30m buffer Public Recreation Area	2
Operational (40%)	Recreation Areas	40%	within 30m buffer of wet course, within 30m buffer of wetland	3
	In Easement	400/	No	1
	(Yes/No)	40%	Yes	5
	Pressurized	20%	No	1
	Pressunzeu	20%	Yes	5
			Normal	1
Service	Road Use		Transit Route	3
Delivery (20%)	(Risk)	100%	Bridge Adjacent Trucking Route	4
			Downtown	5

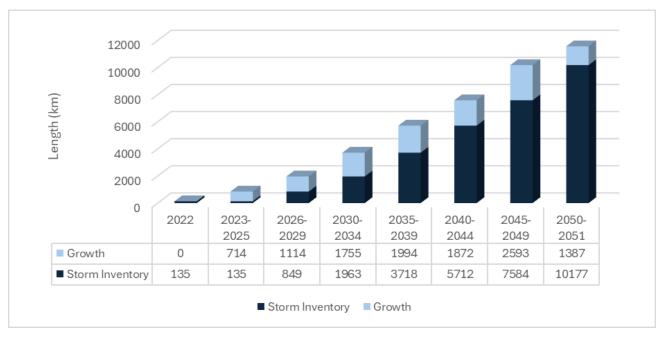
The consequences of failure for storm ponds was calculated using the following	
criteria:	

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			<25,000	1
Financial	Doplocomont		25,000 - 150,000	2
Financial (40%)	Replacement Cost	100%	150,000 - 500,000	3
(40%)	COSL		500,000 - 1,000,000	4
			>1,000,000	5
Operational	SWM Facility	100%	Dry pond, Wet pond	1
(40%)	Туре	100%	Underground Storage	5
Service			Quantity Control	3
Delivery (20%)	SWM_TYPE	100%	Quality and Quantity control	5

This is a high-level model that has been developed based on information currently available and should be reviewed and adjusted to reflect an evolving understanding of both the probability and consequences of asset failure.

Figure 48 Stormwater Network Risk Matrix

The identification of critical assets allows the Town to determine risk mitigation strategies and treatment options. Risk mitigation may include asset-specific lifecycle strategies, condition assessment strategies, or simply the need to collect better asset data.


Growth Management

Trends

Drivers affecting demand include things such as population change, regulations, changes in demographics, seasonal factors, vehicle ownership rates, consumer preferences and expectations, technological changes, economic factors, agricultural practices, environmental awareness, etc.

Population and Economic Growth Forecasts

Growth of population within the Town results in a need to acquire new stormwater infrastructure. Between DC bylaw and developer contributed assets, the core infrastructure is expected to nearly double by 2051, with significant growth occurring between years 2026 and 2040. This growth generally follows the expected population growth. Growth outlined in the DC Background study estimates increases because of growth to maintain current levels of service.

Levels of Service

The following tables identify East Gwillimbury's metrics to identify the current level of service for the stormwater network. By comparing the cost, performance (average condition) and risk year-over-year the Town will be able to evaluate how their services/assets are trending. The Town will use this data to set a target level of service and determine proposed levels for the regulation by 2025.

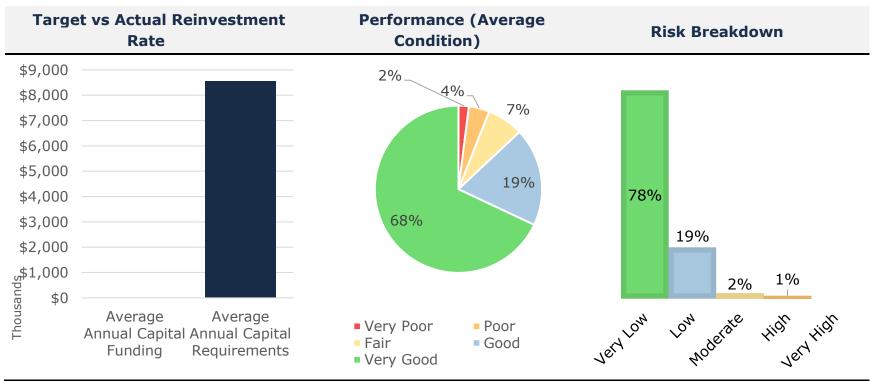


Figure 50: Stormwater Network Strategic Levels of Service

Community Levels of Service

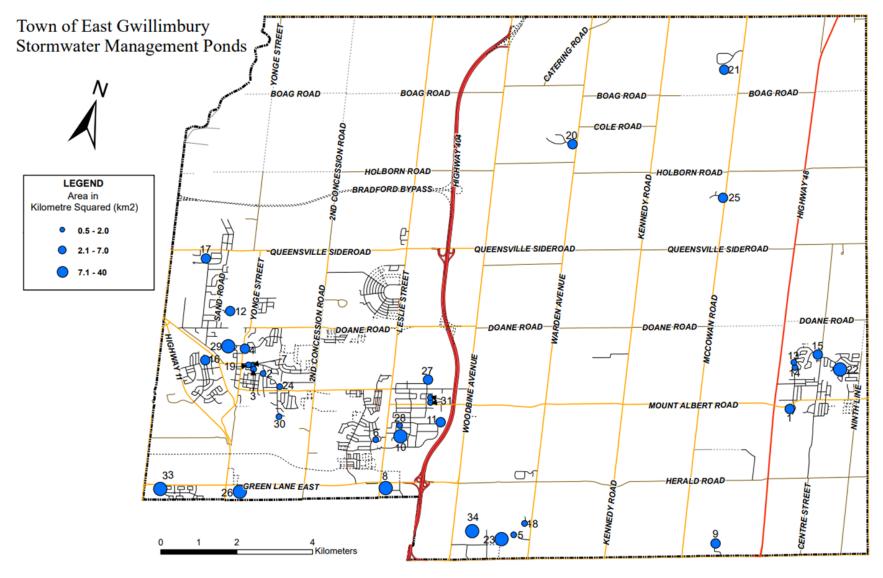
The following table outlines the qualitative descriptions that determine the community levels of service provided by the stormwater network.

 Service Attribute
 Qualitative Description
 Current LOS

 Description, which may include map, of the user groups or areas of the municipality that are

Table 19 Ontario Regulation 588/17 Stormwater Network Community Levels of Service

Scope	groups or areas of the municipality that are protected from flooding, including the extent of protection provided by the municipal stormwater management system	See Figure 51 Stormwater Ponds Map	
-------	--	------------------------------------	--


Technical Levels of Service

The following table outlines the quantitative metrics that determine the technical level of service provided by the stormwater network.

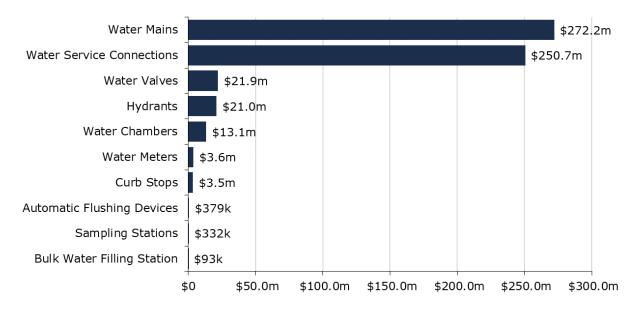
Table 20 Ontario Regulation 588/17 Stormwater Network Technical Levels of Service

Service Attribute	Technical Metric	Current LOS
Scope	% of properties in the municipality that are resilient to a 100-year storm	99.35%
	% of the municipal stormwater management system resilient to a 5-year storm	100%

Figure 51 Stormwater Ponds Map

Appendix I: Water Network

State of the Infrastructure


East Gwillimbury's water network is supplied by the Region of York treated water and is otherwise managed by the Town consisting of water distribution assets. The state of the infrastructure for the water network is summarized in the following table:

Replacement Cost	Condition	Financial Capacity	
\$586,736,017	Very Good (87%)	Annual Requirement:	\$5,544,995
			\$953,305
		Annual Deficit:	\$4,591,690

Inventory and Valuation

The graph below displays the replacement cost of each asset segment in the Town's water network inventory.

Asset Condition

To ensure that East Gwillimbury's water network continues to provide an acceptable level of service, the Town should monitor the average condition of all assets. If the average condition declines, staff should re-evaluate the lifecycle management strategy to determine what combination of activities is required to increase the overall condition of the water network.

The graph below visually illustrates the average condition for each asset segment on a very good to very poor scale.

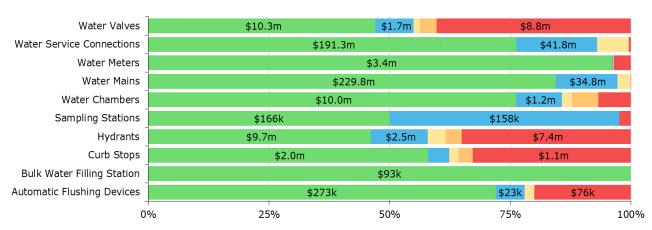


Figure 53 Water Network Condition Breakdown

Very Good Good Fair Poor Very Poor

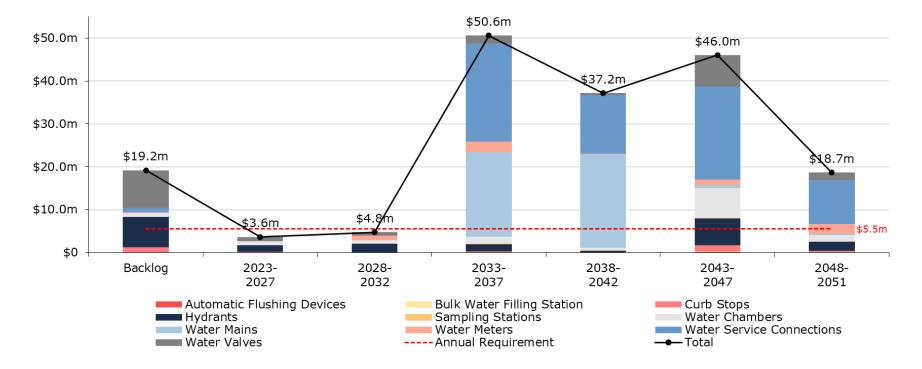
Each asset's estimated useful life should also be reviewed periodically to determine whether adjustments need to be made to better align with the observed length of service life for each asset type. For watermains the estimated useful life was extended based on an industry review based on material. The estimated useful lives used are as follows:

Material	Current Estimated Useful Life	Updated Estimated Useful Life
PVC – Polyvinyl Chloride	60	90
AC – Asbestos Cement	50	75
DI – Ductile Iron	60	60
HDPE – High Density Polyethylene	60	80

Accurate and reliable condition data allows staff to determine the remaining service life of assets and identify the most cost-effective approach to managing assets. Water network assets are all assessed based on age and service life as it is not feasible to assess condition in any other manner. Industry standard it to use age to assess condition of water network assets. Staff monitor and record breaks, hydrant issues, and valve issues, but these are not translated into an overall condition rating.

Lifecycle Management

To ensure that municipal assets are performing as expected and meeting the needs of customers, it is important to establish a lifecycle management strategy to proactively manage asset deterioration.


Annually, the Town completes a review of hazardous events and their risks which may occur in the system. Every three years the Town undertakes a full risk assessment and an emergency preparedness field exercise. Additionally, the Town assesses the functioning of the water system through inspections and operational activities, such as valve turning, water meter repairs, and hydrant maintenance. Auto-flushers are inspected monthly as part of a new program to monitor water loss within the system.

Renewal and replacement for the water network is a combination of reactive and proactive approaches. Due to the DWQMS regulations the network is highly monitored and maintained, therefore the increased oversight allows staff to fix upcoming problems proactively. However, projects such as the high-risk asbestos cement watermain replacements remain in the queue, providing a reactive approach if a break were to occur. There are currently no mid-life rehabilitation events proactively scheduled, rather, water assets are replaced at the end of their useful life.

Forecasted Capital Requirements

Figure 54 illustrates the 20-year forecasted infrastructure replacement requirements for the Town's water network portfolio. East Gwillimbury's 20-year forecasted average annual requirements (red dotted line) total \$9.6 million for all water network assets. Although actual spending may fluctuate substantially from year to year, this figure is a useful benchmark value for annual capital expenditure targets (or allocations to reserves) to ensure projects are not deferred and replacement needs are met as they arise.

These projections and estimates are based on current asset records, their replacement costs, and age analysis only.

Figure 54 Water Network Forecasted Capital Replacement Requirements to 2051

Table 21 below summarizes the projected cost of lifecycle activities (capital replacement only) that will need to be undertaken over the next 10 years to support current levels of service. These projections are generated in Citywide and rely on the data available in the asset register, which was limited to asset age, replacement cost, and useful life.

Segment	Total	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Automatic Flushing Devices	\$15k	\$0	\$0	\$0	\$0	\$8k	\$0	\$0	\$8k	\$0	\$0
Bulk Water Filling Station	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Curb Stops	\$0.24 m	\$0.92m	\$0.08m	\$0.03m	\$0.05m	\$0.01m	\$0	\$0	\$0	\$0.06m	\$0
Hydrants	\$3.5m	\$0.25m	\$0.6m	\$0.1m	\$0.37m	\$0.17m	\$0.25m	\$1.2m	\$0.13m	\$0.25m	\$0.22m
Sampling Stations	\$0.01m	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.01m	\$0
Water Chambers	\$1.7m	\$0	\$0.62m	\$0.1m	\$0.15m	\$0.1m	\$0.04m	\$0.26m	\$0.12m	\$0.29m	\$0.02m
Water Mains	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Water Meters	\$1.1m	\$0.01m	\$0	\$0	\$0.74m	\$0.74m	\$0	\$0	\$0.74m	\$0.14m	\$0.98m
Water Service Connections	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Water Valves	\$1.8 m	\$0	\$0.61m	\$0.14m	\$0.15m	\$0.11m	\$0.05m	\$0.26m	\$0.18m	\$0.29m	\$0.01m

Table 21 Water Network System-Generated 10-Year Capital Costs

Consistent data updates, especially condition, will improve the alignment between the system-generated expenditure requirements, and the Town's capital expenditure forecasts.

Risk Management

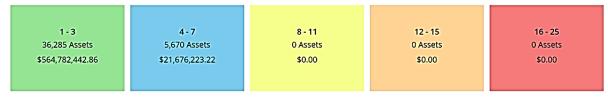
The risk matrix provides a visual representation of the relationship between the probability of failure and the consequence of failure for the assets within the water network category, based on available inventory data.

Risk Criteria

The probability of failure was calculated using the following:

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			80-100	1
Structural			60-79	2
(80%)	Condition	100%	40-59	3
(80%)			20-39	4
			0-19	5
	Extreme Rainfall	20%	1 - 5	1 - 5
Climate	Extreme Snow	20%	1 - 5	1 - 5
Change	Freeze / Thaw	20%	1 - 5	1 - 5
(20%)	Extreme Wind	20%	1 - 5	1 - 5
	Extreme Heat	20%	1 - 5	1 - 5

The consequences of failure for watermains and services was calculated using the following criteria:


Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score		
			0-50	1		
			51-150	2		
Financial	Size (mm)	60%	151-300	3		
(40%)			301-450	4		
(40%)			451+	5		
		400/	Normal	1		
	CROSSING_TYPE	40%	Watercourse, railway	5		
			COPPER, DI, HDPE, PE,	1		
Operational	MATERIAL	50%	PVC, TWPVC			
(40%)			AC	5		
(4070)	In Easement	50%	No	1		
	(Yes/No)	50 /0	Yes	5		
			Normal	1		
Service			Transit Route	3		
Delivery	Road Use (Risk)	100%	Bridge Adjacent, Trucking Route	4		
(20%)			4			
			Downtown	5		

The consequences of failure for all other components other than watermain and services was calculated using the following criteria:

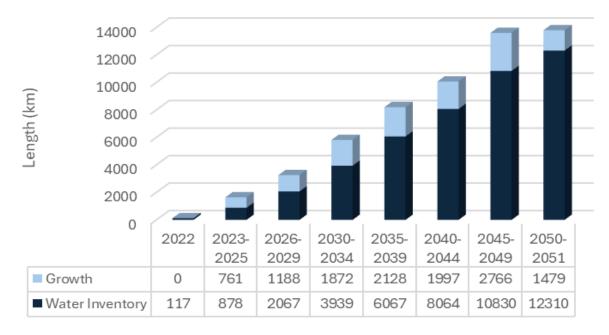
Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
	Financial Replacement (40%) Cost 100%	<25,000	1	
Financial			25,000 - 150,000	2
		100%	150,000 - 500,000	3
(40%)			500,000 - 1,000,000	4
			>1,000,000	5

This is a high-level model that has been developed based on information currently available and should be reviewed and adjusted to reflect an evolving understanding of both the probability and consequences of asset failure.

Figure 55 Water Network Risk Matrix

The identification of critical assets allows the Town to determine risk mitigation strategies and treatment options. Risk mitigation may include asset-specific lifecycle strategies, condition assessment strategies, or simply the need to collect better asset data.

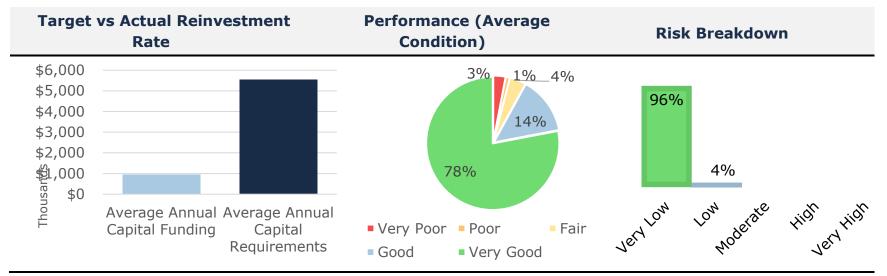
Growth Management


Trends

Drivers affecting demand include things such as population change, regulations, changes in demographics, seasonal factors, vehicle ownership rates, consumer preferences and expectations, technological changes, economic factors, agricultural practices, environmental awareness, etc.

Population and Economic Growth Forecasts

Growth of population within the Town results in a need to acquire new water network infrastructure. Between DC bylaw and developer contributed assets, the core infrastructure is expected to nearly double by 2051, with significant growth occurring between 2026 and 2040. This growth generally follows the expected population growth. Growth outlined in the DC Background study estimates increases because of growth to maintain current levels of service.

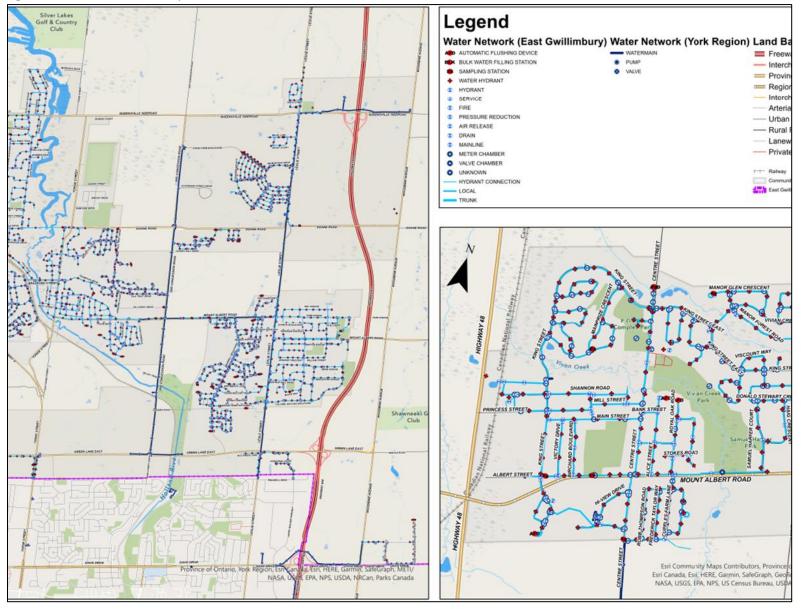


■ Water Inventory ■ Growth

Levels of Service

The following tables identify the Town's metrics to identify their current level of service for the water network. By comparing the cost, performance (average condition) and risk year-over-year East Gwillimbury will be able to evaluate how their services/assets are trending. The Town will use this data to set a target level of service and determine proposed levels for the regulation by 2025.

Figure 57 Water Network Strategic Levels of Service


Community Levels of Service

The following table outlines the qualitative descriptions that determine the community levels of service provided by water network.

Table 22 Ontario Regulation 588/17 Water Network Community Levels of Service

Service Attribute	Qualitative Description	Current LOS
Scope	Description, which may include maps, of the user groups or areas of the municipality that are connected to the municipal water system	See Figure 58
	Description, which may include maps, of the user groups or areas of the municipality that have fire flow	Fire flow is available where water system exists
Reliability	Description of boil water advisories and service interruptions	N/A

Figure 58 Water Network Map

Technical Levels of Service

The following table outlines the quantitative metrics that determine the technical level of service provided by the water network.

Table 23 Ontario Regulation 588/17 Water Network Technical Levels of Service

Service Attribute	Technical Metric	Current LOS
Scope	% of properties connected to the municipal water system	71%
	% of properties where fire flow is available	100%
Reliability	# of connection-days per year where a boil water advisory notice is in place compared to the total number of properties connected to the municipal water system	0
	# of connection-days per year where water is not available to water main breaks compared to the total number of properties connected to the municipal water system	2

Appendix J: Wastewater Network

State of the Infrastructure

East Gwillimbury's wastewater network is collected and treated by the Region of York and is otherwise managed by the Town consisting of wastewater collection assets. The state of the infrastructure for the wastewater network is summarized in the following table:

Replacement Cost	Condition	Financial Capacity	
\$376,161,773	Very Good (87%)	Annual Requirement:	\$4,292,145
		Funding Available:	\$1,204,162
		Annual Deficit:	\$3,087,983

Inventory and Valuation

The graph below displays the replacement cost of each asset segment in the Town's wastewater network inventory.

Figure 59 Wastewater Network Replacement Cost

Asset Condition

To ensure that East Gwillimbury's wastewater network continues to provide an acceptable level of service, the Town should monitor the average condition of all assets. If the average condition declines, staff should re-evaluate the lifecycle

management strategy to determine the combination of activities required to increase the overall condition.

The graph below visually illustrates the average condition for each asset segment on a scale of very good to very poor.

Figure 60 Wastewater Network Condition Breakdown

Each asset's estimated useful life should also be reviewed periodically to determine whether adjustments need to be made to better align with the observed length of service life for each asset type.

Accurate and reliable condition data allows staff to determine the remaining service life of assets and identify the most cost-effective approach to managing assets. Wastewater network assets are all assessed based on age and service life. The CCTV program of wastewater mains is currently underway by a third-party contractor. Staff are developing condition criterion for the assessments so condition data can be attached to inventory assets.

Lifecycle Management

To ensure that municipal assets are performing as expected and meeting the needs of customers, it is important to establish a lifecycle management strategy to proactively manage asset deterioration.

Historically, the Town has inspected 50% of the wastewater network per year using a closed-circuit television (CCTV). This work includes the gravity mains and manholes, but not the laterals. The Town is currently reviewing its sewer inspection program to determine the appropriate inspection frequency going forward. In addition to the network-wide inspection, sewer mains are inspected prior to capital work, and those contributing to inflow and infiltration are inspected. Pumping stations are inspected/monitored multiple times per week with maintenance identified as needed.

Generally, renewal and replacement of the piped system is done reactively. However, there are opportunities to coordinate proactive replaced along with renewing roads. Wastewater pumping stations receive regular maintenance as per manufacturer recommendations. Findings from inspections are used to proactively replace components of pumping stations, however, pumping stations are relatively new and have not experienced significant renewal activities.

Forecasted Capital Requirements

Figure 61 illustrates the forecasted infrastructure replacement requirements for the Town's wastewater network portfolio to the year 2051. East Gwillimbury's forecasted average annual requirements (red dotted line) total \$4.3 million for all wastewater network assets to 2051. Although actual spending may fluctuate substantially from year to year, this figure is a useful benchmark value for annual capital expenditure targets (or allocations to reserves) to ensure projects are not deferred and replacement needs are met as they arise.

These projections and estimates are based on current asset records, their replacement costs, and age analysis only.

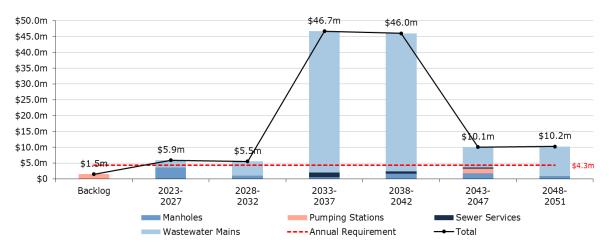


Table 24 below summarizes the projected cost of lifecycle activities (capital replacement only) that will need to be undertaken over the next 10 years to support current levels of service. These projections are generated in Citywide and rely on the data available in the asset register, which was limited to asset age, replacement cost, and useful life.

Segment	Total	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Manholes	\$4.7m	\$0.03m	\$2.3m	\$0	\$1.2m	\$0.09m	\$0	\$0	\$0.55m	\$0.33m	\$0.17m
Pumping Stations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Sewer Services	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Wastewater Mains	\$6.7m	\$0	\$0	\$1.9m	\$0	\$0.33m	\$0	\$0	\$0	\$2.3m	\$2.2m

Table 24 Water Network System-Generated 10-Year Capital Costs

Consistent data updates, especially condition, will improve the alignment between the system-generated expenditure requirements, and the Town's capital expenditure forecasts.

Risk Management

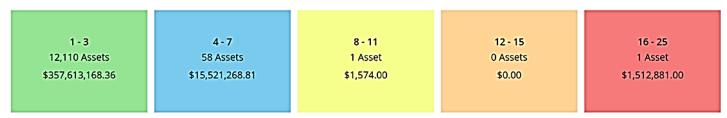
The risk matrix provides a visual representation of the relationship between the probability of failure and the consequence of failure for the assets within the wastewater network category, based on available inventory data.

Risk Criteria

The probability of failure was calculated using the following:

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			80-100	1
			60-79	2
Structural (80%)	Condition	100%	40-59	3
			20-39	4
			0-19	5
_	Extreme Rainfall	20%	1 - 5	1 - 5
Climata Chango	Extreme Snow	20%	1 - 5	1 - 5
Climate Change –	Freeze / Thaw	20%	1 - 5	1 - 5
(20%) -	Extreme Wind	20%	1 - 5	1 - 5
	Extreme Heat	20%	1 - 5	1 - 5

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score		
			0-200	1		
			201-399	2		
	Size (mm)	80%	400-599	3		
Financial			600-999	4		
(40%)			1,000+	5		
	MATERIAL	20%	POLYVINYL CHLORIDE POLYETHYLENE	1		
			ASBESTOS	5		
Operational (40%)			non-sensitive area	1		
	Proximity to ESA	100/	within 30m buffer Public Recreation Area	2		
	or Public Recreation Areas	40%	within 30m buffer of water course, within 30m buffer of wetland	3		
	In Easement	400/	No			
	(Yes/No)	40%	Yes	5		
	Pressurized	20%	No	1		
	Pressurized	20%	Yes	5		
			Normal	1		
Service		1000/	Transit Route	3		
Delivery (20%)	Road Use (Risk)	100%	Bridge Adjacent, Trucking Route	4		
(20%)			Downtown	5		


The consequences of failure for wastewater mains and services were calculated using the following criteria:

Criteria	Risk Criteria	Criteria Weighting	Value/Range	Risk Score
			<25,000	1
			25,000 - 150,000	2
Financial (40%)	Replacement Cost	100%	150,000 - 500,000	3
			500,000 - 1,000,000	4
			>1,000,000	5
			non-sensitive area	1
Operational (40%)	Proximity to ESA or Public	100%	within 30m buffer Public Recreation Area	2
	Recreation Areas		within 30m buffer of water course, within 30m buffer of wetland	3
			0-500	1
Service Delivery	Households 100% 501-1,000 1,001-2,000		501-1,000	2
(20%)			1,001-2,000	3
(20%)	Serviced		2,001-4,000	4
			>4,001	5

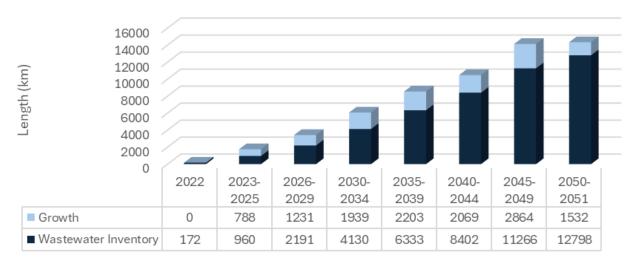
The consequences of failure for pumping stations calculated using the following criteria:

This is a high-level model that has been developed based on information currently available and should be reviewed and adjusted to reflect an evolving understanding of both the probability and consequences of asset failure.

Figure 62 Wastewater Network Risk Matrix

The identification of critical assets allows the Town to determine risk mitigation strategies and treatment options. Risk mitigation may include asset-specific lifecycle strategies, condition assessment strategies, or simply the need to collect better asset data.

Growth Management


Trends

Drivers affecting demand include things such as population change, regulations, changes in demographics, seasonal factors, vehicle ownership rates, consumer preferences and expectations, technological changes, economic factors, agricultural practices, environmental awareness, etc.

Population and Economic Growth Forecasts

Growth of population within the Town results in a need to acquire new wastewater network infrastructure. Between DC bylaw and developer contributed assets, the core infrastructure is expected to nearly double by 2051, with significant growth occurring between 2026 and 2040. This growth generally follows the expected population growth. Growth outlined in the DC Background study estimates increases because of growth to maintain current levels of service.

Population Growth - Wastewater

Wastewater Inventory Growth

Levels of Service

The following tables identify the Town's metrics to identify their current level of service for the wastewater network. By comparing the cost, performance (average condition) and risk year-over-year the East Gwillimbury will be able to evaluate how their services/assets are trending. The Town will use this data to set a target level of service and determine proposed levels for the regulation by 2025.

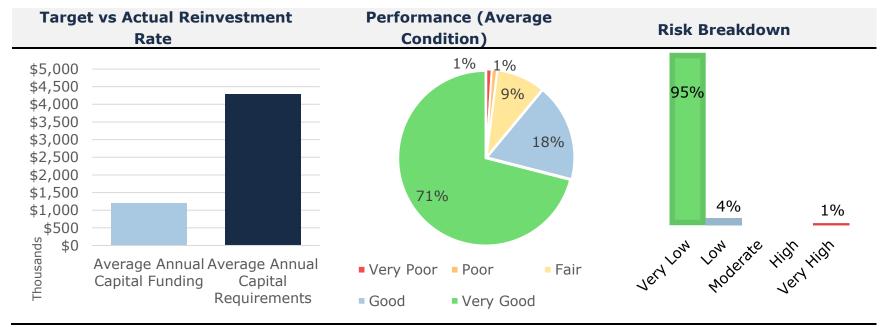
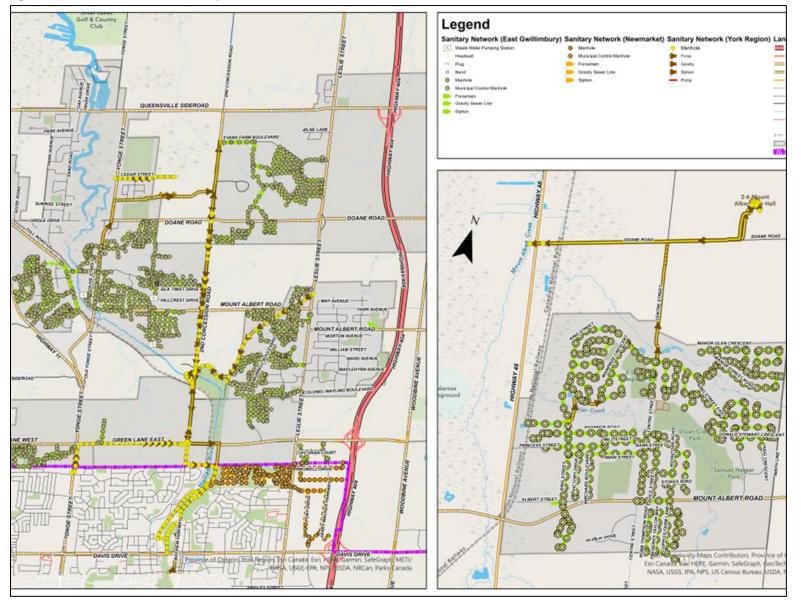


Figure 64 Wastewater Network Strategic Levels of Service


Community Levels of Service

The following table outlines the qualitative descriptions that determine the community levels of service provided by wastewater network.

Service Attribute	Qualitative Description	Current LOS
Scope	Description, which may include maps, of the user groups or areas of the municipality that are connected to the municipal wastewater system	See Figure 65
	Description of how combined sewers in the municipal wastewater system are designed with overflow structures in place which allow overflow during storm events to prevent backups into homes	N/A
	Description of the frequency and volume of overflows in combined sewers in the municipal wastewater system that occur in habitable areas or beaches	N/A
Reliability	Description of how stormwater can get into wastewater mains in the municipal wastewater system, causing sewage to overflow into streets or backup into homes	No known cross-connections by design. Infiltration of groundwater to pipes occurs through pipe defects.
	Description of how wastewater mains in the municipal wastewater system are designed to be resilient to stormwater infiltration	Modern wastewater system is built at a standard to seal it from infiltration. I&I is no present in new areas, and mostly an issue with older areas.
	Description of the effluent that is discharged from sewage treatment plants in the municipal wastewater system	Sewage Treatment is managed by York Region

Table 25 Ontario Regulation 588/17 Wastewater Network Community Levels of Service

Figure 65 Wastewater Network Map

Technical Levels of Service

The following table outlines the quantitative metrics that determine the technical level of service provided by the wastewater network.

Table 26 Ontario Regulation 588/17 Wastewater Network Technical Levels of Service

Service Attribute	Qualitative Description	Current LOS
Scope	% of properties connected to the municipal wastewater system	54%
Reliability	# of events per year where combined sewer flow in the municipal wastewater system exceeds system capacity compared to the total number of properties connected to the municipal wastewater system	N/A
	# of connection-days per year having wastewater backups compared to the total number of properties connected to the municipal wastewater system	0
	# of effluent violations per year due to wastewater discharge compared to the total number of properties connected to the municipal wastewater system	N/A

Appendix K: Roadmap

Roadmap Tasks		2022				2023				2024		2025			
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
2.0 Asset Management Plan (2024 Compliant)															
2.0: Asset Management Readiness Assessment	All														
2.1: Conduct a data gap analysis (non-core)	PRC, CS, EPW, FES, Library														
2.2: Componentize complex facilities	PRC														
2.3: Develop condition scores (non-core)	PRC, CS, EPW, FES, Library														
2.4: Update replacement costs (core & non-core)	PRC, CS, EPW, FES, Library														
2.5: Document condition assessment strategies (non-core)	PRC, CS, EPW, FES, Library														
2.6: Document asset management strategies (non-core)	PRC, CS, EPW, FES, Library														
2.7: Develop risk models (non-core)	PRC, CS, EPW, FES, Library														
2.8: Document Technical and Community LOS metrics (non-core)	PRC, CS, EPW, FES, Library														
2.9: Update the Growth Strategy (non-core)	All														
2.10: Accounting of Costs to Deliver the Current LOS (non-core)	Finance, CS														
2.11: Document Sustainable Funding Sources (non-core)	Finance														
2.12: Update the financial strategy (non-core)	Finance, CS														
2.13: Update the AMP for 2024 compliance	CS														
2.14: Council endorsement of the AMP (non-core)	Council														

Error! Reference source not found.

3.0 Asset Management Plan (2025 Compliant)								
3.0: Asset Management Readiness Assessment	All							
3.1: Update the Asset inventory	All							
3.2: Assess the public's expectations	CS							
3.3: Determine and document the proposed LOS options	All							
3.4: Document the proposed lifecycle strategy options	All							
3.5: Assess increases in demand caused by growth	All							
3.6: Accounting of Costs to Deliver the Proposed Level of Service	Finance, CS							
3.7: Document Sustainable Funding Sources	Finance							
3.8: Conduct Scenario Analysis to Revise Proposed Levels of Service	All							
3.9: Review Scenario Analysis with Council	CS, Finance, Council							
3.9: Update the Financial Strategy	Finance, CS							
3.11: Review the proposed financial strategy with Council	CS, Finance, Council							
3.12: Update the AMP for 2025 compliance	CS							
3.13: Council endorsement of the Asset Management Plan	Council							

Appendix L: Definitions of Key Terms

Term	Definition
Asset Condition Assessment	The process of continuous or periodic inspection, assessment, measurement and interpretation of the resultant data to indicate the condition of a specific asset so as to determine the need for some preventative or remedial action. It is a crucial part of asset management to determine remaining useful life and an assets capability to meet performance requirements.
Asset Register	Record of asset data and information considered worthy of separate identification and accountability.
Backlog	Industry term used to calculate the cost to replace assets that remain in service beyond their estimated useful life.
Community Service Level	A service level that specifies the level of service that is to be provided to the community.
Critical Asset	A critical asset is an asset for which the financial, business or service level consequences of failure are sufficiently severe to justify proactive inspection and rehabilitation. Critical assets have a lower threshold for action than non-critical assets.
Funding Gap	 The difference between; a. The amount of funds required annually for satisfactory operation, maintenance & renewal of an asset over the useful life, and b. The amount of funds currently being spent on the asset annually
Level of Service (LOS)	Parameters or a combination of parameters, which reflect social, political, environmental and economic outcomes that the organization delivers.
Lifecycle	Stages involved in the management of an asset. These could include acquisition, rehabilitation, replacement, and disposal.
Replacement Value	The cost, in today's dollars, to replace an existing asset with another like asset that performs the same function and purpose.
Risk	A combination of the likelihood and consequence of an unforeseen event occurring.
Target Reinvestment Rate	Annual capital requirement divided by total replacement cost
Technical Service Level	A service level associated with the physical characteristics of an asset.
Upgrade	Is capital works carried out on an existing asset to provide a higher level of service.
Useful Life	The period over which a depreciable asset is expected to be useful for, or the number of production or similar units (i.e. intervals, cycles) that is expected to be obtained from the asset.